
Chombo Class PiecewiseLinearFillPatchFace

Dan Martin (code mods) and Gustav Meglicki (weave)

October 13, 2006

Prolongate.w,v 1.68 2006/10/13 22:05:20 gustav Exp

Contents

1 Copyright and Authors 1

2 Introduction 2

3 The Header File 3

4 The CPP File 9

4.1 Defining the Border . 11
4.1.1 Loop over face directions . 14
4.1.2 Loop over boxes . 15

4.2 Inquiry functions . 21
4.3 Filling the Border . 22

4.3.1 Time Interpolation . 23
4.3.2 Piecewise Constant Interpolation . 24
4.3.3 Evaluation of Slopes . 26
4.3.4 Tangent Correction . 29
4.3.5 Normal Correction . 30

4.4 Debugging Utilities . 33

Index 34

1 Copyright and Authors

This software is copyright c© by the Lawrence Berkeley National Laboratory. Permission is granted to
reproduce this software for non-commercial purposes provided that this notice is left intact.

It is acknowledged that the U.S. Government has rights to this software under Contract DE-AC03-765F00098
between the U.S. Department of Energy and the University of California.

This software is provided as a professional and academic contribution for joint exchange. Thus it is
experimental, is provided “as is”, with no warranties of any kind whatsoever, no support, no promise of
updates, or printed documentation. By using this software, you acknowledge that the Lawrence Berkeley
National Laboratory and Regents of the University of California shall have no liability with respect to the
infringement of other copyrights by any part of this software.

Class PiecewiseLinearFillPatchFace discussed herein is based on Chombo’s PiecewiseLinearFillPatch,
code modifications by Dan Martin, LBNL, Friday, January 14, 2000.

This weave is by Gustav Meglicki, Indiana University, for the Argonne National Laboratory. It was prepared
with cweb-3.64 by Silvio Levy and Donald E. Knuth, and LATEX classes rcs-2.10 by Joachim Schrod and
Jeffrey Goldberg and cweb-3.6 by Joachim Schrod.

1

2 Introduction

This document annotates and explains in painful detail class PiecewiseLinearFillPatchFace contributed to
Chombo by Dan Martin. The class derives from a standard Chombo class PiecewiseLinearFillPatch and has
been extended to work with a Chombo class FluxBox that is used to manage face centered data such as fluxes.

For our nano-photonics project and FDTD computations we must ensure that data that has been
“prolongated” on the fine grid faces is divergence free. Now, PiecewiseLinearFillPatchFace does not do
this, but by analyzing how and what it does, we should be able to produce the required remedy, for example, as
a change file to this document, or as an overload of currently available class methods.

Class PiecewiseLinearFillPatchFace is central to shapes. Because media distribution in shapes is static,
we have little need for moving Chombo grids, and we won’t in the future 3D version of the code. Once the data
on the grids have been initialized at the beginning of the computation to zero, we never have to reconstruct
fields on the fine grids again. Field restriction, i.e., transfer from a fine to a coarse level, is trivial and follows
Balsara’s and Dan’s procedure of averaging fine data over the coarse grid faces, while ignoring the data that’s
between the coarse grid faces. This simple procedure transfers divergence free property from the finer to the
coarser level. We may have to add a divergence killing correction on the fine/coarse boundary. This is the
refluxing part of the procedure, and it is going to be analyzed in a separate document.

But fine-grid boundary updates at the fine/coarse boundaries have to be carried out at every time step and it
is here that we had observed instabilities arising, especially near the fine region corners.

Consequently, this part of the code must be scrutinized and brought under our full control. Luckily, the code
is written entirely in C++, and without any references to Chombo Fortran stubs, which makes its analysis
somewhat easier.

This document comprises two large sections. The first section, 3, is the header file. It introduces data
structures and methods of the class. Then the second section, 4, introduces the code itself.

The second section is subdivided into two major subsections. The first one, 4.1, is concerned with defining
the border between a fine and a coarse region and allocating various data structures used in calculating the
prolongation. This is the role of function define , which is a de facto constructor of the class. The second
subsection, 4.3, fills the coarse/fine border on the fine grid side with data obtained from the coarse grid. It
prolongates the data.

The prolongation implemented in PiecewiseLinearFillPatchFace is just simple linear interpolation with
slope limiters. This is a good starting point on the way to divergence-free Balsara prolongation. Once we get to
understand how this code handles the data and how the actual computations are done, we should be able to
expand on the procedures as needed.

Throughout the weave problematic parts of the code are flagged with the Knuth dangerous bend sign, as �
shown in the margin of this paragraph.

The general algorithm presented here is fairly simple. We start with data on a coarse grid and on a fine grid.
First we create a coarsened fine grid, i.e., a grid that is coarse, but that overlaps exactly with the fine grid. It is
a coarse-world image of the fine grid. Then we create LevelData on this coarsened fine grid. At this stage we
give it a border belt of ghost cells which is wide enough to cover entirely the border belt of the fine grid ghost
cells and then stretch a little more. Then we copy data from the original coarse grid to this coarsened fine grid.
This operation fills the ghost cells of the coarsened fine grid as well.

The border cells of the fine and the coarsened fine grids are identified by swelling each box of the grid and
then subtracting all other boxes of the grid from it. If the swollen box is in the middle of the grid, this
procedure subtracts all its points and produces an empty set. But if the box is on the boundary of the grid,
then the cells that stick out aren’t subtracted and these are the cells that identify the boundary. These cells are
also ghost cells of both the fine and the coarsened fine grids.

Once the coarsened fine grid border cells are identified, slopes can be computed on them and these are then
used in interpolating data onto the fine grid border cells.

Having to deal with face centered data, periodic boundaries, slope and face directions, etc., introduces
various complications that have to dealt with.

2

3 The Header File

The content of the header file is enclosed in the # ifndef clause that ensures that its definitions won’t be read
more than once into the compilation stream, even if the file is included several times. The name of the class is
PiecewiseLinearFillPatchFace and its purpose is to fill coarse/fine border ghost cells on the fine sub-grid
side with data generated from coarse grid data. In the case of this class, as we have remarked earlier, the data
is linearly interpolated.

The class constructs the boundary region when it is first defined. This is not a cheap operation and so, if a
given subgrid is going to remain static throughout the computation, the class should be defined just once.

The class does not define any private interfaces or variables. Its protected interfaces and variables may be
accessed by derived classes, as if they were public, but cannot be accessed by the rest of the program—this is
the standard C++ meaning of the keyword protected.

〈 Prolongate.H 3 〉 ≡3

#ifndef _PIECEWISE_LINEAR_FILL_PATCH_FACE_H_

define _PIECEWISE_LINEAR_FILL_PATCH_FACE_H_

〈 Includes 4 〉
class PiecewiseLinearFillPatchFace {
〈Public Interfaces 5 〉
〈Protected Interfaces 6 〉
〈Protected Variables 7 〉

}
#endif

¶ The includes are as follows. First we include standard C++ iostream and fstream , which define IO. Then
we have Chombo specific includes that define:

REAL.H This file defines the meaning of the Chombo term Real, which may be a double or a single precision
floating point number depending on how the Chombo library has been configured.

Box.H This file defines the Box class, which is a rectangular box of grid points (cells). To be more specific,
boxes can be defined to support various types of data placement, e.g., cell centered, face centered, etc.

FArrayBox.H This file defines the FArrayBox class, which is a field of n Real components defined on a Box.

FluxBox.H This file defines the FluxBox class, which has a separate FArrayBox field associated with each
face of a grid cell. This class may be thought of as wrapping three (in 3D) face-mounted or two (in 2D)
FArrayBoxes into a single object. This class supports setVal , copy and shift operations, the same way
FArrayBox does, and LevelData (see the next item) of FluxBoxes can be constructed the same way
as LevelData of FArrayBoxes.

LevelData.H This file defines the LevelData class template, which associates a field with a subgrid. The
subgrid is divided into Boxes, which must form a DisjointBoxLayout. The field is either an
FArrayBox defined over every Box of the layout, or a bundle of these, that is a FluxBox, defined over
every Box of the layout. But LevelData may also associate other types of data with every Box of the
layout, for example sets of grid points.

IntVectSet.H This file defines the IntVectSet class, which is a set of IntVects, which are integer vectors.

These normally define grid cells. A set of these is therefore a set of grid cells—but we will also refer to
them as points. We are going to represent a border between a coarse and a fine level by a LevelData of
grid cell sets, where the cells form the border. In other words, each Box of the DisjointBoxLayout will
have a set of border points associated with it. If a given Box does not abut the border, the set will be
empty.

ProblemDomain.H This file defines the ProblemDomain class, which can be thought of as a large Box that
encloses all the Boxes of all DisjointBoxLayouts at all levels. The sides of a ProblemDomain is
where boundary conditions for the computation, periodic or otherwise, are applied, and a

3

ProblemDomain carries some information about it—periodic or non-periodic, if periodic, in which
direction. This is the main difference between it and a Box. In most Chombo function calls a Box may
be used in place of a ProblemDomain, in which case the domain is assumed non-periodic.

〈 Includes 4 〉 ≡4

#include <iostream>

#include <fstream>

#include "REAL.H"

#include "Box.H"

#include "FArrayBox.H"

#include "FluxBox.H"

#include "LevelData.H"

#include "IntVectSet.H"

#include "ProblemDomain.H"

This code is used in chunk 3.

¶ The public interfaces declared in the header file are for the creator and destructor of the class, which can be
called without any or with some arguments, about which more below. We also have a method define(), which is
used by the class to build required data structures and make an actual object. Then there is a small boolean
function isDefined () that doesn’t take any arguments and that is discussed in chunk 〈 Inquiry functions 24 〉,
page 21, and an auxiliary debugging function printIntVectSets() that doesn’t take any arguments either and
that is discussed in chunk 〈Debugging Utilities 39 〉, page 33.

Once the class has been defined, a function fillInterp can be called that fills coarse/fine border cells on the
fine grid side with coarse grid data that have been time and space interpolated and additionally massaged in
various ways (van Leer slope limiting). This stuff is discussed in chunks 〈Fill the Border 25 〉, page 22, to
〈 Interpolate between faces 38 〉, page 31.

Functions isDefined () and printIntVectSets() are declared to be inspectors, as opposed to modifiers, meaning
that they don’t change anything inside the class. This is the meaning of the word const that follows the
interface definition of the method. The functions are used to tell us if the class has been fully defined and, if it
has, to print the list of coarse/fine border cells.

The arguments needed to define the class, and used by both define and the
PiecewiseLinearFillPatchFace constructor, are as follows

a fine domain This is the DisjointBoxLayout of the fine grid. This argument is passed by reference, and the
reference is not changed (it is const) by the constructor.

a coarse domain This is the DisjointBoxLayout of the coarse grid. This argument is also passed by
reference, and the reference is not changed (it is const) by the constructor.

a num comps The number of field components. . . per face. We must remember here that the way a vector field,
e.g., ~B is encoded in a FluxBox is that each component of ~B is associated with a different face of the
box cell. And so a FluxBox associates three separate 1-component FArrayBoxes with each box of
nodes. The value of a num comps in this case is 1, not 3. But, say, if the field was such that there would
be a tri-vector associated with each face of the box, then a num comps would be 3. An example of such a
field could be a 3 × 3 tensor field.

a crse problem domain This can be either a ProblemDomain or a Box that encloses the coarse domain grid
and overlaps with the whole computational domain of the problem, sharing boundary periodicities with it,
if any. It has the same resolution as a coarse domain . If a Box is used in this place, it is internally
upgraded to a non-periodic ProblemDomain that is built around the box.

a ref ratio A refinement ratio between coarse and fine grids.

a interp radius An interpolation radius, i.e., the radius in fine grid cells, of the coarse grid region, that is
scanned to produce the interpolation. This number must be an integral multiple of the refinement ratio,
i.e., if a ref ratio is 2, then a interp radius must be 2, 4, 6, etc.,

4

Function fillInterp takes the following arguments:

a fine data This is the field that’s defined on the fine grid.

a old coarse data This is the “old” version of the field that’s defined on the coarse grid. The data is going to be
first time-interpolated between the old coarse data and the new coarse data, and then only it will be
space-interpolated. See chunk 〈Fill the Border 25 〉, page 22.

a new coarse data This is the “new” version of the field that’s defined on the coarse grid.

a time interp coef This is the time interpolation coefficient. It has to be a real number between 0.0 and 1.0.
0.0 means “take just the old data”, 1.0 means “take just the new data”, and anything between 0.0 and 1.0
delivers a mixture of old and new. See the next chunk, 〈Protected Interfaces 6 〉, and chunk 〈Time
Interpolation 27 〉, that discusses the internals of the time interpolating function, for more details.

a src comp This is the first component on the coarse grid side from which to start the interpolation.

a dest comp This is the first component on the fine grid side into which to start the writing.

a num comp This is the number of components to be interpolated and transferred into the coarse/fine border
cells on the fine grid side.

The same comments apply to these components as above, i.e., a vector field ~B is a 1-component field,
because there is one component associated with each box face. But if there is more than one component
associated with each face, then we also have to specify how many components we want to interpolate and this
number is a num comp . The interpolated components may not necessarily be written onto the same
components on the destination side. The user may wish to write them on different components. In this case the
first destination component must be provided in a dest comp .

〈Public Interfaces 5 〉 ≡5

public:
PiecewiseLinearFillPatchFace();
∼PiecewiseLinearFillPatchFace();
PiecewiseLinearFillPatchFace(const DisjointBoxLayout &a fine domain , const DisjointBoxLayout

&a coarse domain , int a num comps , const Box &a crse problem domain , int a ref ratio , int

a interp radius);
PiecewiseLinearFillPatchFace(const DisjointBoxLayout &a fine domain , const DisjointBoxLayout

&a coarse domain , int a num comps , const ProblemDomain &a crse problem domain , int

a ref ratio , int a interp radius);

void define (const DisjointBoxLayout &a fine domain , const DisjointBoxLayout &a coarse domain , int

a num comps , const Box &a crse problem domain , int a ref ratio , int a interp radius);
void define (const DisjointBoxLayout &a fine domain , const DisjointBoxLayout &a coarse domain , int

a num comps , const ProblemDomain &a crse problem domain , int a ref ratio , int a interp radius);
bool isDefined () const;
void fillInterp(LevelData〈FluxBox〉 &a fine data , const LevelData〈FluxBox〉 &a old coarse data , const

LevelData〈FluxBox〉 &a new coarse data ,Real a time interp coef , int a src comp , int

a dest comp , int a num comp);
void printIntVectSets() const;

This code is cited in chunks 10, 11, and 25.

This code is used in chunk 3.

¶ In this chunk we define protected function interfaces of the class. The word protected here means that
they’re private to the class, but may be accessed by the class heirs, as opposed to data specified as private,
which would mean that only the class may access them. This is done so that the class may be effectively
extended in future.

These functions are all internal and not visible to the user of the class. The functions declared here are

5

timeInterp This protected function performs linear time interpolation between a old coarse data and
a new coarse data where a time interp coef specifies the point of interpolation: 0.0 means interpolate at
the a old coarse data time, 1.0 means interpolate at the a new coarse data time. This Real number may
be anything between 0 and 1. The function interpolates multiple components beginning with a src comp .
The number of components to interpolate is a num comp and the interpolated data is written on the
internal storage of the class, m coarsened fine data , defined in the next chunk, on destination components
beginning with a dest comp . The function is discussed in chunk 〈Time Interpolation 27 〉, page 23.

fillConstantInterp This protected function transfers field values that live in a given cell of the coarsened fine
grid, i.e., in m coarsened fine data , to the fine grid cells it overlaps with. The data is written on
a fine data . The field values are then further tweaked to produce slope limited interpolations. The
arguments to this function are a fine data , the first component on the source side, the first component on
the destination side, and the number of components to be transferred. This function is discussed in chunk
〈Piecewise Constant Interpolation 29 〉, page 24.

computeSlopes This protected function computes slopes of a field stored in m coarsened fine data in the
direction a dir . The slopes for a field associated with a given face direction are computed within the face
only. The slopes are limited so as to avoid generation of artifacts. The slope directions are: 0 for x, 1 for
y and 2 for z. Once evaluated, the slopes will be used by function incrementLinearInterpTangential in the
interpolation of data on the fine grid faces that overlap with faces of the coarsened fine grid. The slopes
are calculated for a num comp components beginning with a src comp and stored in component slots that
begin with a dest comp on the destination side. This function is discussed in chunk 〈Evaluation of
Slopes 31 〉, page 26.

incrementLinearInterpTangential This protected function implements linear corrections in the direction a dir

to field values on fine grid faces that overlap with faces of the coarsened fine grid using van Leer limited
slopes evaluated by computeSlopes . It is discussed in chunk 〈Tangent Correction 35 〉, page 29. Its
arguments are the fine grid data, a fine data , the slope direction, a dir , source and destination
components a src comp and a dest comp , and the number of components to interpolate.

incrementLinearInterpNormal This protected function, which is discussed in chunk 〈Normal Correction 37 〉,
page 30, interpolates data on fine grid faces that do not overlap with coarsened fine grid faces, i.e., it fills
the interior fine grid faces, interior with respect to the coarsened fine grid. It does so by simple linear
interpolation between the fine grid data that live on the faces shared with the coarsened fine grid. The
arguments are a fine data , which is the fine grid data, a number of field components to interpolate,
a num comp , the first component on the source side, a src comp , and the first component on the
destination side, a dest comp .

Functions that do not affect internal variables are the inspectors, but they may write on external data
layouts. The functions flagged with const in the listing below are in this category.

〈Protected Interfaces 6 〉 ≡6

protected:
void timeInterp(const LevelData〈FluxBox〉 &a old coarse data , const LevelData〈FluxBox〉

&a new coarse data ,Real a time interp coef , int a src comp , int a dest comp , int a num comp);
void fillConstantInterp(LevelData〈FluxBox〉 &a fine data , int a src comp , int a dest comp , int

a num comp) const;
void computeSlopes (int a dir , int a src comp , int a num comp);
void incrementLinearInterpTangential (LevelData〈FluxBox〉 &a fine data , int a dir , int a src comp , int

a dest comp , int a num comp) const;
void incrementLinearInterpNormal (LevelData〈FluxBox〉 &a fine data , int a src comp , int a dest comp , int

a num comp) const;

This code is cited in chunk 5.

This code is used in chunk 3.

¶ And finally we have internal protected variables, namely

6

m is defined This parameter is set to true when the object of class PiecewiseLinearFillPatchFace is fully
defined. Other class functions look it up, to check if it’s safe to operate on the data.

s stencil radius This is a constant parameter that is used in just one place in function define , when calculating
the coarse ghost radius , i.e., the number of ghost cells that need to be added to the coarsened fine grid
boxes (see m coarsened fine data below for the discussion), in chunk 〈 create private data structures 14 〉,
page 12. This is the distance that we need to go outside the fine grid boundary region to collect data for
centered differences. See chunk 〈 create private data structures 14 〉, page 12, for a more detailed
discussion. It is set to 1 in chunk 〈CPP File Includes 9 〉, page 9.

m ref ratio This is an internal copy of the refinement ratio.

m interp radius This is an internal copy of the interpolation radius.

m coarsened fine data This is a data structure that corresponds to the fine level data, but it’s constructed on a
new coarse sub-grid that overlaps exactly with the fine grid. The coarse sub-grid is obtained by
coarsen-ing the fine grid. The data from the original coarse level grid is first copied onto
m coarsened fine data , and then all following computations—slopes—are calculated on
m coarsened fine data . Some data is copied from m coarsened fine data onto a fine data by function
fillConstantInterp discussed in chunk 〈Piecewise Constant Interpolation 29 〉, page 24.

m slopes This is a data structure that lives on the same grid as m coarsened fine data—also a FluxBox—but
contains limited slopes of field values. It is used in calculating linear corrections to piecewise constant
interpolation in chunk 〈Tangent Correction 35 〉, page 29. This field is re-used for different slope
directions as a temporary store, because as soon as the slopes for a given direction have been computed
and stored on it, they are used by the next function call, so they can be overwritten in the next iteration
over slope directions.

m crse problem domain This is an internal copy of the coarse level problem domain.

The following four variables are layouts of sets. They are constructed by associating a set of grid points
(IntVects) with each box of the layout. The coarse/fine grid border is defined in terms of these. If a given box
is internal and does not abut a border, its corresponding set is going to be empty. But if the box abuts the
border, then the nodes of the box that are on the border go into the set. We can then iterate, first over the
boxes of the layout and then over the points of the set associated with each box, to perform computations on
data associated with boundary nodes.

The first of the four set layouts, m fine interp , is associated with the fine grid box layout and the remaining
three are associated with the coarsened fine grid box layout. The coarsened sets overlap with the fine sets, but
they stretch a little beyond them by the length of the stencil radius and then still a little bit.

m fine interp This is an array of set layouts, one for each face direction, that contains points onto which data
will be interpolated. In the original Chombo PiecewiseLinearFillPatch code this variable is not an
array. But here we have separate FArrayBoxes associated with each face of each cell. For each of the
face directions we collect the coarse/fine border points separately into the corresponding component of
the array. The boxes of the layout in this case are those of the fine grid.

m coarse centered interp This is a matrix of set layouts. The second index numbers cell faces, as is the case
with m fine interp above. The first index numbers the directions in which slopes are calculated—and they
will be calculated only in the directions that lie within the face, i.e., that are perpendicular to the
direction of the face. The box layouts here are those of the coarsened fine grid. For most points slopes can
be evaluated from both sides, because we grow the border belt on the coarsened fine grid side sufficiently
wide to incorporate all points that are needed (this is what the stencil radius constant is for). However, if
in some locations the coarse grid outer boundary, i.e., the coarse/coarser boundary, gets so close to the
fine grid outer boundary, i.e., the fine/coarse boundary, that this cannot be done, then we have to resort
to the evaluation of one-sided differences. This is a somewhat pathological situation and it is possible to
make the code flag a problem if this happens. We will collect such points on the sets defined below,
m coarse lo interp and m coarse hi interp . This set layout, m coarse centered interp , is for the points,
for which we can evaluate central differences.

7

m coarse lo interp This set layout is for the border points, for which we will evaluate one-sided differences
“from the left hand side”, otherwise it is like m coarse centered interp . The lookup to the left means that
the point is at the right edge of our computational space, because only then we are guaranteed to find
data to the left of it.

m coarse hi interp This set layout is for the border points, for which we are going to evaluate one-sided
differences “from the right hand side”, otherwise it is like m coarse centered interp . The lookup to the
right means that the point is at the left edge of our computational space, because only then we are
guaranteed to find data to the right of it.

The slopes for a given face and slope direction, by whichever means they are obtained, are written on
m slopes . m slopes no longer knows if given slopes come from central differences or one-sided differences.

〈Protected Variables 7 〉 ≡7

protected:
bool m is defined ;
static const int s stencil radius ;
int m ref ratio ;
int m interp radius ;
LevelData〈FluxBox〉 m coarsened fine data ;
LevelData〈FluxBox〉 m slopes ;
ProblemDomain m crse problem domain ;
LayoutData〈IntVectSet〉 m fine interp [SpaceDim];
LayoutData〈IntVectSet〉 m coarse centered interp [SpaceDim][SpaceDim];
LayoutData〈IntVectSet〉 m coarse lo interp [SpaceDim][SpaceDim];
LayoutData〈IntVectSet〉 m coarse hi interp [SpaceDim][SpaceDim];

This code is cited in chunks 9, 11, 16, and 20.

This code is used in chunk 3.

8

4 The CPP File

The CPP file includes the header file, described in the previous sections, and other Chombo and C++ headers,
then lists various class construction wrappers. Eventually we get to define, which constructs the coarsened fine
grid and other private data structures, and identifies the fine/coarse boundary points.

Function fillInterp is a simple wrapper around five auxiliary private functions that do the actual job of
interpolating data and writing them on the appropriate locations in the fine grid’s boundary. The auxiliary
functions are then defined following fillInterp .

Finally, there is a debugging utility printIntVectSets that can be used to print a list of boundary nodes found
by define.

〈CPP File Includes 9 〉8

〈Wrappers for Define 10 〉
〈Define the Border 11 〉
〈 Inquiry functions 24 〉
〈Fill the Border 25 〉
〈Debugging Utilities 39 〉

¶ Some of the includes here, like "REAL.H", "Box.H", "FArrayBox.H", "LevelData.H", and "IntVectSet.H"

overlap with includes in the header file and so they’re not really needed. The Chombo includes that are new are

IntVect.H This file defines IntVects themselves, i.e., integer vectors that describe grid points (cells).

DisjointBoxLayout.H This file defines a layout of boxes of grid points that constitutes a grid level. The boxes
may be distributed over multiple CPUs, but Chombo handles parallelism quite transparently. Seldom do
we have to do anything about it explicitly.

LayoutIterator.H This file defines a device that is used to iterate over boxes of a given layout.

MayDay.H This file defines a device for flagging errors and aborting the program.

We also include "cmath", which is a part of the standard C++ library that covers mathematics. The two
using lines tell the compiler that cout and endl , if encountered in the program text, should be picked up from
the std package.

Finally, there is a little inline definition of a utility, called copysign , that transfers a sign from its second
argument to its first argument. This utility is employed in one place only, in chunk 〈Evaluate van Leer limited
central differences 32 〉, page 27.

At the end of this section we fix the s stencil radius constant, discussed in chunk 〈Protected Variables 7 〉,
page 6, at 1. As we have mentioned before, this variable is used in one place only in chunk 〈 create private data
structures 14 〉, page 12, where its meaning is discussed in more detail. Setting it at 1 means that we restrict
ourselves to linear interpolations based on centered differences.

〈CPP File Includes 9 〉 ≡9

#include <cmath>

#include "REAL.H"

#include "IntVect.H"

#include "Box.H"

#include "FArrayBox.H"

#include "LevelData.H"

#include "IntVectSet.H"

#include "DisjointBoxLayout.H"

#include "LayoutIterator.H"

#include "MayDay.H"

using std ::cout ;
using std ::endl ;

#include "PiecewiseLinearFillPatchFace.H"

#ifndef copysign

9

template〈class T 〉 inline T copysign (const T&a, const T&b)
{

return (b ≥ 0) ? ((a ≥ 0) ? a : −a) : ((a ≥ 0) ? −a : a);
}

#endif

const int PiecewiseLinearFillPatchFace ::s stencil radius = 1;

This code is cited in chunks 7 and 14.

This code is used in chunk 8.

¶ This chunk introduces various wrappers around the actual utility that constructs the class. The real
constructor is the class method define discussed in the next chunk.

The constructor itself may be called without any arguments, in which case nothing is constructed and the
protected class variable m is defined is set to false .

The destructor, ∼PiecewiseLinearFillPatchFace(), doesn’t do anything. There is no explicit garbage
collection here—though other classes that are invoked by this one, e.g., LevelData, may attend to their own
clean-up.

As we have discussed in chunk 〈Public Interfaces 5 〉 the constructor may be invoked with a coarse problem
domain specified either as a Box or as a ProblemDomain. If the domain is specified as a Box, the wrapper
makes it into a non-periodic ProblemDomain, and then calls define. Otherwise, the wrapper calls define and
passes all arguments it has received to it without change. Both wrappers set m is defined to false . It is then up
to define to replace this with true , once the object has been fully constructed.

Function define similarly may be called with the coarse problem domain defined as a Box, in which case the
Box is converted to a non-periodic ProblemDomain and the function then calls its other instantiation that
carries out the object construction.

〈Wrappers for Define 10 〉 ≡10

PiecewiseLinearFillPatchFace ::PiecewiseLinearFillPatchFace() : m is defined (false)
{ }

PiecewiseLinearFillPatchFace ::∼PiecewiseLinearFillPatchFace()
{ }
PiecewiseLinearFillPatchFace ::PiecewiseLinearFillPatchFace(const DisjointBoxLayout

&a fine domain , const DisjointBoxLayout &a coarse domain , int a num comps , const Box

&a crse problem domain , int a ref ratio , int a interp radius) : m is defined (false)
{

ProblemDomain crsephysdomain (a crse problem domain);

define (a fine domain , a coarse domain , a num comps , crsephysdomain , a ref ratio , a interp radius);
}
PiecewiseLinearFillPatchFace ::PiecewiseLinearFillPatchFace(const DisjointBoxLayout

&a fine domain , const DisjointBoxLayout &a coarse domain , int a num comps , const

ProblemDomain &a crse problem domain , int a ref ratio , int a interp radius) : m is defined (false)
{

define (a fine domain , a coarse domain , a num comps , a crse problem domain , a ref ratio , a interp radius);
}

void PiecewiseLinearFillPatchFace ::define (const DisjointBoxLayout &a fine domain , const

DisjointBoxLayout &a coarse domain , int a num comps , const Box &a crse problem domain , int

a ref ratio , int a interp radius)
{

ProblemDomain crsephysdomain (a crse problem domain);

define (a fine domain , a coarse domain , a num comps , crsephysdomain , a ref ratio , a interp radius);
}

This code is used in chunk 8.

10

4.1 Defining the Border

The class method define , creates data structures that are needed to characterize and wrap the coarse/fine
border and to carry out required interpolations. Also, it identifies the coarse/fine border itself and stores this
information. The data structures and the definition of the border are then used by function fillInterp , see
chunk〈Fill the Border 25 〉, page 22, that fills the fine level border ghost cells with data obtained from the
coarse level.

The calling parameters for define are as we have discussed in chunk 〈Public Interfaces 5 〉, page 4.
The function itself is rather long and complicated, but its general outline is fairly simple. First, it transfers

data to the simple protected class variables m ref ratio , m interp radius , and m coarse problem domain ,
already discussed in chunk 〈Protected Variables 7 〉, page 6, and performs some basic sanity checks.

Then it checks if the coarse level box layout, a coarse domain , is fully defined. When a layout definition is
completed, the layout gets closed . Closing a box layout sorts the boxes and makes them available to other
Chombo operations, such as writing data on them. A function that checks if the layout has been closed is called
isClosed ().

So, if the coarse level box layout has been closed, then only does define perform other operations, and if it
gets safely to the end, it sets m is defined to true and returns. Come to think of it, we should check if
a fine domain has been closed, too, but we don’t. Is this an omission? �

The other operations mentioned aboved are

1. creation of the protected data structures m slopes and m coarsened fine data—already discussed in chunk
〈Protected Variables 7 〉, page 6, and

2. a loop over the face directions, where most of the action takes place.

Recall that we are dealing with face-mounted fields here. For each face direction then we are going to perform
all the operations that PiecewiseLinearFillPatch ::define does once only, so that every one of these
face-centered fields is taken care of, separately.

〈Define the Border 11 〉 ≡11

void PiecewiseLinearFillPatchFace ::define (const DisjointBoxLayout &a fine domain , const

DisjointBoxLayout &a coarse domain , int a num comps , const ProblemDomain

&a crse problem domain , int a ref ratio , int a interp radius)
{
〈 transfer data to private variables 12 〉
〈perform sanity checks 13 〉
if (a coarse domain .isClosed ()) {
〈 create private data structures 14 〉
〈 loop over face directions 15 〉
m is defined = true ;

}
}

This code is cited in chunks 14 and 15.

This code is used in chunk 8.

¶ This is a trivial chunk that transfers input data to the class protected variables m ref ratio , m interp radius

and m crse problem domain .
Tacked on to this chunk is also a definition of a shift iterator associated with the ProblemDomain

m crse problem domain . The ShiftIterator class contains a list of shift vectors that are used to enforce
periodic boundary conditions, if such are present. This definition doesn’t really have to be here, but is. It is
used in chunks 〈Make correction for periodic boundary conditions 20 〉, 〈Subtract coarse domain boxes from
one sided stencils 22 〉 and 〈Collect fine cells for interpolation 23 〉.

〈 transfer data to private variables 12 〉 ≡12

m ref ratio = a ref ratio ;
m interp radius = a interp radius ;
m crse problem domain = a crse problem domain ;

11

ShiftIterator shiftIt = m crse problem domain .shiftIterator ();

This code is cited in chunk 20.

This code is used in chunk 11.

¶ The sanity checks in this chunk are not exactly comprehensive.
First, we check if a interp radius is a multiple of a ref ratio . The reason why we want this is because we will

interpolate over whole cells of the coarsened fine grid, whereas a interp radius is given in terms of the fine grid
constant. The width of the coarsened fine grid border belt to scan data from for interpolation will be
a interp radius/a ref ratio plus an additional reach that will be discussed in more detail in chunk 〈 create
private data structures 14 〉, page 12, where the actual sizing and shaping of the m slopes and
m coarsened fine data grids happens.

If a interp radius is not a multiple of a ref ratio , we print an error message on cerr and exit via
MayDay ::Abort (). This is what MayDay ::Error () does.

The code could be a little more friendly here and automatic adjustment of m interp radius to the multiple of �
a ref ratio from a given a interp radius could be implemented easily. Also, the code does not check if the
interpolation radius is large enough to cover all ghost cells of the fine grid. The user must ensure this by
matching one against the other.

Then we check if a fine domain has the same periodicity as m crse problem domain , which is by now a copy
of a crse problem domain . This is done by refining the coarse domain into what we call just here
fine problem domain , and comparing it against a fine domain that’s been passed to the function through the
argument list.

a fine domain is a disjoint box layout of the fine level. The DisjointBoxLayout method checkPeriodic ,
which takes a ProblemDomain as its argument checks if its box layout is compatible with the domain. To be
compatible both must have the same periodicity in all directions and with the same periods. This is also why
we could not use m crse problem domain in this check, because then the periods would be different. We had to
create a refined version that would match the grid spacing of the fine level.

The C NewLib macro assert turns into void if the program is compiled with the −DNDEBUG flag, which is a
default for Chombo. To activate assert s, a DEBUG version of the library must be used.

Normally, when assert receives false it prints a message showing what failed and where and aborts.

〈perform sanity checks 13 〉 ≡13

if (a interp radius 6= (a interp radius/a ref ratio) ∗ a ref ratio) {
MayDay ::Error ("PiecewiseLinearFillPatchFace::define: interp_radius must be\

 integral multiple of nRef");
}

const ProblemDomain fine problem domain = refine (m crse problem domain ,m ref ratio);

assert (a fine domain .checkPeriodic (fine problem domain));
This code is cited in chunk 14.

This code is used in chunk 11.

¶ Now we enter the all-embracing if (a coarse domain .isClosed ()) statement of chunk 〈Define the
Border 11 〉.

First, we check if the DisjointBoxLayout a coarse domain is compatible with the ProblemDomain

a crse problem domain , the same way we did it in chunk 〈perform sanity checks 13 〉 for the
DisjointBoxLayout a fine domain .

Then we get down to the business of building m coarsened fine data and m slopes . Both fields will live on a
grid that is a coarsened copy of a fine domain . To make this grid we define it first and then instantiate to the
coarsened version of a fine domain by calling Chombo function coarsen .

In order to call LevelData〈FluxBox〉 ::define on both m slopes and m coarsened fine data we still have to
decide on the width of ghost cell margins for both fields, and it is here that we use s stencil radius that was
introduced so mysteriously in chunk〈CPP File Includes 9 〉, page 9.

12

The formula for both fields is roughly speaking as we have already pointed out in chunk 〈perform sanity
checks 13 〉, page 12, i.e., m interp radius/m ref ratio plus an additional reach to ensure the availability of
points for centered differences.

The extra reach for m slopes does not reach anywhere. The formula is �
nr + r − 1

r
= n +

r − 1

r
,

where nr is m interp radius (in multiples of m ref ratio), and r is m ref ratio . Because it is all done within the
integer arithmetic, the term (r − 1)/r always truncates to zero. So, in effect we end up with coarse slope radius

being simply n. The formula used in the code probably derives from the days before the enforcement for
m interp radius has been put in chunk 〈perform sanity checks 13 〉 and is currently redundant, i.e., it can be
replaced simply with m interp radius/m ref ratio .

The coarse ghost radius is this plus 2, because s stencil radius has been set to 1. Now, what is this
coarse ghost radius . It is the number of ghost cells that are going to be added to m coarsened fine data boxes
when it is created. This is m interp radius/m ref ratio , which is how far we will grow the coarse/fine boundary
belt on the fine grid side in chunk 〈Collect coarse cells for interpolation 19 〉, page 16, and incidentally also how
far the m slopes boxes reach, plus an additional stretch to collect data for centered differences. This additional
stretch is s stencil radius . To be on the safe side though, we still add one more cell, sic!

In summary, we are going to surround m coarsened fine data grid boxes with a sufficiently thick layer of
ghost cells so that the actual coarse/fine border cells we’ll identify in 〈Collect coarse cells for interpolation 19 〉
should cover entirely the m slopes and a fine data border belts with a sufficient additional margin to find
points for centered differences at every border point of m slopes .

It ought to be said that we do not run LevelData〈FluxBox〉 ::exchange on either m slopes or
m coarsened fine data in this code anywhere. But the LevelData〈FluxBox〉 ::copyTo method, which is
invoked in chunk 〈Time Interpolation 27 〉, page 23, to transfer data from a old coarse data and
a new coarse data to m coarsened fine data does fill the ghost cells, and these are then used in interpolation
onto the fine grid.

The user of this code is responsible for setting the interpolation radius sufficiently large so that all ghost cells �
of the fine grid are covered. This does not happen automatically, even though it could, because
LevelData〈T 〉 ::ghostVect () method can be used to return the number of ghost cells of the fine level field.

Once we have all items in place—the ghost cell margins and the disjoint box layout—we finally define

m slopes and m coarsened fine data , whereupon we initialize all field components in the latter to −666.666.
The reason why the “number of the beast” is used here is because we want a number that would stand out and
be easy to recognize in case we have to debug the class or a program using it.

Here is the first time that we encounter a DataIterator. We will also encounter a LayoutIterator soon.
There is one used in chunk 〈Collect coarse cells for interpolation 19 〉, page 16. A LayoutIterator returns
boxes of a layout. They are naked, unadorned boxes. Unadorned by ghost cells. On the other hand
DataIterator returns FArrayBoxes or FluxBoxes of the layout and these are defined on boxes that have
been grown to incorporate ghost nodes. These boxes can be extracted from the fields. But DataIterator is an
heir to LayoutIterator and can be applied to BoxLayouts as well, in which case it does the same as
LayoutIterator.

The call to m coarsened fine data [dit ()] returns a whole FluxBox defined over a box that’s overgrown with
ghost cells. The setVal method, sets all its components attached to all faces and in all cells of the overgrown
box to −666.666.

〈 create private data structures 14 〉 ≡14

assert (a coarse domain .checkPeriodic (a crse problem domain));

DisjointBoxLayout coarsened fine domain ;

coarsen (coarsened fine domain , a fine domain ,m ref ratio);

const int coarse slope radius = (m interp radius + m ref ratio − 1)/m ref ratio ;
const int coarse ghost radius = coarse slope radius + s stencil radius + 1;
const IntVect coarse slope = coarse slope radius ∗ IntVect ::Unit ;

m slopes .define (coarsened fine domain , a num comps , coarse slope);

const IntVect coarse ghost = coarse ghost radius ∗ IntVect ::Unit ;

13

m coarsened fine data .define (coarsened fine domain , a num comps , coarse ghost);
{

DataIterator dit = coarsened fine domain .dataIterator ();

for (dit .begin (); dit .ok (); ++dit) {
m coarsened fine data [dit ()].setVal (−666.666);

}
}

This code is cited in chunks 7, 9, 13, and 21.

This code is used in chunk 11.

4.1.1 Loop over face directions

Now we are going to discuss chunk 〈 loop over face directions 15 〉, first mentioned in chunk 〈Define the
Border 11 〉, page 11.

This is the outermost iterative loop of define . It loops over the three directions that cell faces face (in 3D),
ex, ey and ez. For each face direction we are going to do separately what
PiecewiseLinearFillPatch ::define () does just once for cell centered data. This is the major difference
between the two define s. It’s basically like running PiecewiseLinearFillPatch ::define () three times.

For each of these directions several other iterations will be carried out. The ultimate purpose of these is to
identify all boundary nodes, both on the fine and on the coarse side, and classify the coarse side nodes,
depending on whether we can calculate centered differences on them, or whether they are so far out that if we
tried to calculate centered differences we would reach into “the void” while collecting data.

This may happen in one situation only, namely, if the outer border of the original coarse grid, i.e., the
coarse/coarser border, is so close to the outer border of the fine grid, i.e., the fine/coarse border, that when we
grow the boxes of the coarsened fine grid by adding ghost cells to them, the grown boxes protrude beyond the
outer boundary of the coarse grid. More about this in chunk 〈Refine coarse cells sets 21 〉, page 18. Such cells
will be put into one-sided slope sets, m coarse lo interp and m coarse hi interp , and all other cells will go into
centered slope sets m coarse centered interp .

Fine grid boundary cells are all put into one set, m fine interp . The sets will remain empty for in-land boxes
that are away from the boundary.

All these collections and classifications are quite expensive. The loops are quadratic in the number of boxes
per level, because we’ll pick up a box and then for this box, we’ll iterate over all other boxes of this level or of
the coarse level performing various operations on the pairs of boxes so obtained. This is why for a static
multigrid it is best to call define just once, at the beginning of the program, and not every time we need to fill
fine region boundaries with data.

The first chunk in the loop, 〈Allocate grid point sets for each direction 16 〉, creates the sets—initially empty.
The second chunk, 〈Make devices for testing periodic boundaries 17 〉, marks periodic boundaries, if there are
any such. Finally, the third chunk, 〈Loop over boxes of the coarsened fine domain 18 〉, enters a yet another
loop, this time over all boxes of the coarsened fine domain. So, the moment we get into it, we’re going to look
at the boxes, one after another, performing various operations on them, so as to generate and classify the sets
of boundary nodes.

〈 loop over face directions 15 〉 ≡15

for (int faceDir = 0; faceDir < SpaceDim ; faceDir ++) {
〈Allocate grid point sets for each direction 16 〉
〈Make devices for testing periodic boundaries 17 〉
〈Loop over boxes of the coarsened fine domain 18 〉

}

This code is cited in chunks 15 and 18.

This code is used in chunk 11.

¶ So, here we finally construct the set layouts, m fine interp , m coarse centered interp , m coarse lo interp

and m coarse hi interp , defined and discussed at some length in chunk 〈Protected Variables 7 〉, page 6. The

14

first one, m fine interp is defined over a fine domain , and the remaining set layouts are defined over
coarsened fine domain , with the other index dir numbering directions in which field slopes will be evaluated.

Although we will only use slopes evaluated in the directions perpendicular to faceDir , we allocate space for �
all directions here, because this code derives from the cell-centered version, in which all directions were used.

〈Allocate grid point sets for each direction 16 〉 ≡16

m fine interp [faceDir].define (a fine domain);
for (int dir = 0; dir < SpaceDim ; ++dir) {

m coarse centered interp [dir][faceDir].define (coarsened fine domain);
m coarse lo interp [dir][faceDir].define (coarsened fine domain);
m coarse hi interp [dir][faceDir].define (coarsened fine domain);

}

This code is cited in chunk 15.

This code is used in chunk 15.

¶ In this chunk we make two devices that will be used to check if boxes we’ll compute on abut a periodic
boundary. The devices are just boxes that are the same as m crse problem domain or fine problem domain

boxes with one exception. They are shortened by one row (both at the top and at the bottom) in the direction
in which periodicity occurs. The tests will then be carried out by checking if a given box is contained within
our device. If it is contained, it does not abut the boundary. If it is not contained, it means it does abut the
periodic boundary and then we’ll have to treat it specially.

These two devices will be used in chunks 〈Make correction for periodic boundary conditions 20 〉, page 17,
〈Subtract coarse domain boxes from one sided stencils 22 〉, page 19, and 〈Collect fine cells for
interpolation 23 〉, page 20.

〈Make devices for testing periodic boundaries 17 〉 ≡17

Box periodicTestBox (m crse problem domain .domainBox ());

if (m crse problem domain .isPeriodic ()) {
for (int idir = 0; idir < SpaceDim ; idir ++) {

if (m crse problem domain .isPeriodic (idir)) periodicTestBox .grow (idir ,−1);
}

}

Box periodicFineTestBox (fine problem domain .domainBox ());

if (m crse problem domain .isPeriodic ()) {
for (int idir = 0; idir < SpaceDim ; idir ++) {

if (m crse problem domain .isPeriodic (idir)) periodicFineTestBox .grow (idir ,−1);
}

}

This code is cited in chunks 15 and 20.

This code is used in chunk 15.

4.1.2 Loop over boxes

Now we loop over all boxes of the coarsened fine domain . Recall that this loop is within the outermost loop of
define , which is over the face directions faceDir , defined in chunk 〈 loop over face directions 15 〉.

By now we have constructed (for the time being empty) sets that will eventually be filled with grid points
onto which we will interpolate data (the fine grid) and from which we will collect data for interpolation (the
coarse grid).

We have also made devices for testing for periodic boundaries on both the coarse and the fine levels.
The first operation we carry out within the box loop is the identification and collection of the coarsened fine

grid cells that abut the boundary. This is where we are going to take data from for interpolation. We will
assemble these points into a temporary local (i.e., associated with the box we’re working on) set called
coarsened fine interp .

15

We will then divide this set into three sets, depending on whether we can evaluate centered slopes or
one-sided slopes for points contained in them. We refer to this step as cell sets refinement—perhaps a better
term would be cell sets division, or cell classification.

All these operations will be performed on the coarsened fine grid, not on the original fine grid. They will
result in filling m coarse centered interp , m coarse lo interp and m coarse hi interp with points.

The last chunk in the box loop fills m fine interp with points. Observe that the disjoint box layouts for both
the fine grid and the coarsened fine grid are identical. The only difference between the two grids is that the
coarsened boxes are. . . coarsened. Consequently, we can use the same dit () for fetching fine grid and coarsened
fine grid boxes.

〈Loop over boxes of the coarsened fine domain 18 〉 ≡18

DataIterator dit = coarsened fine domain .dataIterator ();

for (dit .begin (); dit .ok (); ++dit) {
〈Collect coarse cells for interpolation 19 〉
〈Refine coarse cells sets 21 〉
〈Collect fine cells for interpolation 23 〉

}

This code is cited in chunks 15 and 23.

This code is used in chunk 15.

Collect coarse cells for interpolation

So here is how we identify and collect coarsened fine grid boundary cells that will provide us with data for
interpolation. Recall that this is the first operation we perform within the loop over the boxes of the coarsened

fine grid box layout. The variable dit () selects a box of either the fine grid or the corresponding coarsened fine
grid layout, faceDir selects the face direction for which we are doing all this.

We begin by picking an unadorned, ghost-cells free box from a fine domain that dit () points to and call it
fine box . Then we grow this box by m interp radius cells in all directions and coarsen it by m ref ratio . If any
portion of the box produced this way protrudes out of the m crse problem domain we chop it off. The final
result is now called coarsened fine facebox .

Now, why do we do this? We are going to identify coarse/fine border cells by taking every box of the
coarsened fine domain and subtracting it from the coarsened fine facebox . If the latter is somewhere in the
middle of the grid, we’ll end up subtracting all its points, so the result will be an empty set. But if the latter
abuts a boundary, then the grown cells that protrude beyond the boundary will not be subtracted. These cells
then will be saved in coarsened fine interp .

Now it is clear why m interp radius has to cover at least the ghost cells of a fine data . If it does not, the
outermost ghost cells will not receive updates.

But before we get to do this, there is one subtlety we have to address.
Our data is face-mounted, not cell-center mounted. This means that for a given face direction we are going to

have some data reside on the “left wall” of the box and on the “right wall” of the box. Yet cell-centered boxes of
a DisjointBoxLayout, which are the ones we operate on here, do not account for this. The way we deal with
it is that we include an additional layer of cells on the high side of the box, so as to cover that “right wall”.

Here is how we go about it. First we call the Box ::surroundingNodes () method. This method converts the
box to NODE type in the direction specified, which adds the “right wall”. Now we have both the “left wall” and
the “right wall” in the box, but the box type has changed too, the nodes in the faceDir direction correspond to
cell walls, not cell centers.

Now, this would be just what we want if the logic of the program was meticulously designed for it from the �
beginning. But this is not the case. We work here with the original cell-centered code of
PiecewiseLinearFillPatch that has been merely tweaked to work with face centered data. So we are going to
convert the NODE type of the box back to cell centers by shifting the nodes in the faceDir direction by one-half
of the grid spacing. The effect of this operation is that we have simply added a layer of cells on the high side of
the original box in the faceDir direction. We could have accomplished the same more economically by calling
Box ::growHi (FaceDir , 1).

We will have to repeat this operation on all other boxes that we’re going to work with, including the ones
we’ll use to subtract grid points from this box.

16

Having produced the box we want, we get all the node points from it and put them in a set called
coarsened fine interp . The reason for this is that the operation of subtracting one box from another cannot be
carried out on boxes. This operation is well defined for sets , or for subtracting a box from a set, but not a box
from a box.

So, we have all the points of our enlarged box with the “right wall” attached in the set. Now we enter a loop
over all boxes of coarsened fine domain . For every box of the domain we stretch it in the faceDir direction by
one layer of cells, so as to incorporate the “right wall” and then subtract it from coarsened fine interp .

In case a given box abuts a periodic boundary we have to treat it specially and this is deferred to chunk
〈Make correction for periodic boundary conditions 20 〉, which is discussed next.

〈Collect coarse cells for interpolation 19 〉 ≡19

const Box &fine box = a fine domain [dit ()];
Box coarsened fine facebox = coarsen (grow (fine box ,m interp radius),m ref ratio)&m crse problem domain ;

coarsened fine facebox .surroundingNodes (faceDir);
coarsened fine facebox .shiftHalf (faceDir , 1);

IntVectSet coarsened fine interp(coarsened fine facebox);
LayoutIterator other lit = coarsened fine domain .layoutIterator ();

for (other lit .begin (); other lit .ok (); ++other lit) {
Box other coarsened box = coarsened fine domain .get (other lit ());

other coarsened box .surroundingNodes (faceDir);
other coarsened box .shiftHalf (faceDir , 1);
coarsened fine interp −= other coarsened box ;
〈Make correction for periodic boundary conditions 20 〉

}

This code is cited in chunks 14, 21, 22, 23, and 35.

This code is used in chunk 18.

¶ So, how do we deal with periodic boundary conditions?
First, we check if there are any. This is what the isPeriodic method tells us. If the domain is periodic, we use

the two devices we constructed in chunk 〈Make devices for testing periodic boundaries 17 〉, page 15. The
devices were two domain-sized boxes that were shortened in the direction of periodicity both from the top and
from the bottom by one layer of cells. So here we check if either other coarsened box or coarsened fine facebox

are entirely contained within periodicTestBox . If both are contained, it means that neither touches the periodic
boundary, and so we don’t have to do anything.

If this is not the case, it means that either one or the other or both boxes touch a periodic boundary.
In this case we may have to go to the wrap-around region and subtract nodes from there.
Here is how we go about it. We extract the box from m crse problem domain , which, as is defined in chunk

〈Protected Variables 7 〉, is a ProblemDomain—not a BoxLayout. The Box method size () returns an
IntVect, which yields a size of the box in each direction, and we call it shiftMult .

The ShiftIterator shiftIt returns a unit IntVect for every direction in which m crse problem domain is
periodic, as has been defined in chunk 〈 transfer data to private variables 12 〉, page 11. So here for every such
periodic direction we define an IntVect called shiftVect , which points in the direction given by shiftIt , and the
length of which is given by the size of the domain in this direction. The Box method shift () shifts the box by
shiftVect cells, so that the box now wraps around the periodic domain. The cells of the wrapped around box
are now subtracted from the coarsened fine interp set. After this operation is complete, the box is shifted back
into its original position to prepare it for another shift in another periodic direction.

〈Make correction for periodic boundary conditions 20 〉 ≡20

if (m crse problem domain .isPeriodic () ∧ ¬periodicTestBox .contains (other coarsened box) ∧
¬periodicTestBox .contains (coarsened fine facebox)) {

IntVect shiftMult (m crse problem domain .domainBox ().size ());
Box shiftedBox (other coarsened box);

for (shiftIt .begin (); shiftIt .ok (); ++shiftIt) {
IntVect shiftVect = shiftMult ∗ shiftIt ();

17

shiftedBox .shift (shiftVect);
coarsened fine interp −= shiftedBox ;
shiftedBox .shift (−shiftVect);

}
}

This code is cited in chunks 12, 17, 19, 22, and 23.

This code is used in chunk 19.

Refine coarse cell sets

Having collected all cells of the coarsened fine grid from which we are going to collect data for interpolation, we
need to divide them depending on

1. the direction of slopes,

2. the ability to evaluate centered difference on them, if not put them in appropriate one-sided slope sets.

So we enter a loop over slope directions dir . These are not the same as faceDir directions. The latter
describe the specific face directions for which we do all this. The former refer to the direction in which slopes
(gradients) are going to be taken. Eventually we will be interested only in the directions that are perpendicular

to faceDir , see, for example, chunk 〈Evaluation of Slopes 31 〉, page 26. But this code derives from a
cell-centered version and prepares us for taking slopes in all directions, including dir = faceDir . This may come
handy in future modifications.

As we enter this loop, the two indexes that we have inherited from the two higher level loops we’re inside of,
point to the box, dit (), and to the face direction, faceDir .

The first thing we do is to extract the currently empty set that corresponds to this box, this faceDir and this
slope direction, from m coarse centered interp . We call this set coarse centered interp and we transfer all points
collected in coarse fine interp in the preceding chunk 〈Collect coarse cells for interpolation 19 〉 to it. These
were collected for this box and for this faceDir , but not specifically for this slope direction and we didn’t check
if all points were suitable for centered differences either. So coarse centered interp has too many points in it at
present and we’ll have to take some away.

In a similar manner we extract the currently empty sets that correspond to this slope direction, this face
direction and this box from m coarse lo interp and m coarse hi interp and fill them both with points from
coarse centered interp .

But having done this we shift all points in coarse lo interp “to the right” in the dir direction and all points
in coarse hi interp “to the left” in the dir direction, by one cell.

Now, recall that we have oversized the ghost region of the coarsened fine grid in chunk 〈 create private data
structures 14 〉, page 12, so as to fit enough points outside of the coarsened fine interp set, reaching into the
original coarse grid, to evaluate centered differences on all points of coarsened fine interp . The only time this is
not going to happen is if the outer border of the original coarse grid, i.e., the coarse/coarser border, is so close
to the outer border of the fine grid, i.e., the fine/coarse border, that when we produce the grown boxes of the
coarsened fine grid, their ghost cells reach beyond the outer boundary of the coarse grid.1

So what we are going to do now is to subtract the boxes of the original coarse grid, not the coarsened fine
grid, from these “left” or “right” shifted sets, coarse lo interp and coarse hi interp . Only the cells that “hang
over the edge” will survive this subtraction, and these are the ones we want to have in coarse hi interp and in
coarse lo interp . If the grid hierarchy has been constructed so that there are sufficiently wide margins between
the outer coarse level grid and the outer fine level grid, these two sets will be always empty.

We could indeed use these two sets to raise flags in case we don’t want to work with one-sided differences. In �
this case, we could go back to the place where we build the grid hierarchy and rebuild it with wider margins
between grid boundaries.

Once we have carried out the subtraction, discussed in the next chunk 〈Subtract coarse domain boxes from
one sided stencils 22 〉, we shift the surviving points of coarse lo interp and coarse hi interp back into place, and
having done so, we subtract both sets from coarse centered interp . So now, what’s left in the latter are all those
happy cells that can be used for centered differences in the dir direction.

1The weaver is indebted to Dan Martin for the clarification of this point.

18

〈Refine coarse cells sets 21 〉 ≡21

for (int dir = 0; dir < SpaceDim ; ++dir) {
IntVectSet &coarse centered interp = m coarse centered interp [dir][faceDir][dit ()];

coarse centered interp = coarsened fine interp ;

IntVectSet &coarse lo interp = m coarse lo interp [dir][faceDir][dit ()];

coarse lo interp = coarse centered interp ;
coarse lo interp .shift (BASISV(dir));

IntVectSet &coarse hi interp = m coarse hi interp [dir][faceDir][dit ()];

coarse hi interp = coarse centered interp ;
coarse hi interp .shift (−BASISV(dir));
〈Subtract coarse domain boxes from one sided stencils 22 〉
coarse lo interp .shift (−BASISV(dir));
coarse hi interp .shift (BASISV(dir));
coarse centered interp −= coarse lo interp ;
coarse centered interp −= coarse hi interp ;

}
This code is cited in chunks 15 and 35.

This code is used in chunk 18.

¶ Here we subtract the coarse grid, a coarse domain , boxes from the two sets, coarse lo interp and
coarse hi interp . The iterator coarse lit () returns pointers to the actual boxes, which are then obtained with
get (coarse lit ()) and copied onto bx . As we have done before, we stretch each bx in the faceDir direction by
one layer of cells before we carry out the subtraction, so as to cover the “right wall” of the box, on which we
have some data mounted.

If either bx or the coarsened fine facebox (which we have constructed and stretched in chunk 〈Collect coarse
cells for interpolation 19 〉, this is the box we’re still working on, the box pointed to by dit ()) protrudes beyond
a periodic boundary of the coarse grid, we wrap around the boundary and continue the subtraction on the
other side, as we have done earlier in chunk 〈Make correction for periodic boundary conditions 20 〉. Then we
shift the box bx back in place in preparation for wraping about the boundary in the next periodic direction.

〈Subtract coarse domain boxes from one sided stencils 22 〉 ≡22

LayoutIterator coarse lit = a coarse domain .layoutIterator ();

for (coarse lit .begin (); coarse lit .ok (); ++coarse lit) {
Box bx = a coarse domain .get (coarse lit ());

bx .surroundingNodes (faceDir);
bx .shiftHalf (faceDir , 1);
coarse lo interp −= bx ;
coarse hi interp −= bx ;
if (m crse problem domain .isPeriodic () ∧ ¬periodicTestBox .contains (bx) ∧

¬periodicTestBox .contains (coarsened fine facebox)) {
IntVect shiftMult (m crse problem domain .domainBox ().size ());
Box shiftedBox (bx);

for (shiftIt .begin (); shiftIt .ok (); ++shiftIt) {
IntVect shiftVect = shiftMult ∗ shiftIt ();

shiftedBox .shift (shiftVect);
coarse lo interp −= shiftedBox ;
coarse hi interp −= shiftedBox ;
shiftedBox .shift (−shiftVect);

}
}

}
This code is cited in chunks 12, 17, and 21.

This code is used in chunk 21.

19

Collect fine cells for interpolation

So far we have collected coarse grid cells from which to interpolate data onto fine grid cells and we have divided
them into three sets holding centered stencils, and one-sided stencils (two sets).

In this chunk we will collect cells of the fine grid onto which data will be interpolated.
Remember that in this part of the code we have the selected face direction in faceDir and the index of the

selected box of the coarsened fine domain in dit (). This index numbers both the boxes of the fine grid and of
the coarsened fine grid.

We begin by picking up the, as yet empty, set of m fine interp that corresponds to this faceDir and to this
box and give it a more tractable temporary name of fine interp . Also, remember that right at the beginning of
the loop over the boxes of the coarsed fine grid (see chunk 〈Loop over boxes of the coarsened fine domain 18 〉),
in chunk 〈Collect coarse cells for interpolation 19 〉, we have picked up a dit () box from a fine domain and gave
it a name of fine box .

So here we make a copy of it first and call this copy fine faceBox . Then we grow this box in all directions by
m interp radius cells, but chop off anything that may stick out of the fine problem domain . Then we go again
through the procedure of attaching the “right wall” of the box by stretching it in the faceDir direction by one
layer of cells. Finally, we take all the cells out of that box and put them in the fine interp set.

And so, at this point, the set contains all cells of the fine box , plus all cells around it, to the width of
m interp radius , plus an extra layer of cells on the faceDir face.

As we did before with the coarsened fine boxes, we will now subtract all ungrown boxes of the fine grid from
this set. But before the subtraction, we stretch those boxes in the faceDir direction by one layer, to incorporate
the “right wall”. These boxes are ungrown because they are extracted from a BoxLayout and not from
LevelData.

In case either the fine box or the box that is being subtracted from it abuts a periodic domain boundary, we
have to wrap around, and we do this as has been explained in chunk 〈Make correction for periodic boundary
conditions 20 〉.

〈Collect fine cells for interpolation 23 〉 ≡23

IntVectSet &fine interp = m fine interp [faceDir][dit ()];
Box fine faceBox (fine box);

fine faceBox .grow (m interp radius);
fine faceBox &= fine problem domain ;
fine faceBox .surroundingNodes (faceDir);
fine faceBox .shiftHalf (faceDir , 1);
fine interp .define (fine faceBox);

LayoutIterator fine lit = a fine domain .layoutIterator ();

for (fine lit .begin (); fine lit .ok (); ++fine lit) {
Box bx = a fine domain .get (fine lit ());

bx .surroundingNodes (faceDir);
bx .shiftHalf (faceDir , 1);
fine interp −= bx ;
if (fine problem domain .isPeriodic () ∧ ¬periodicFineTestBox .contains (fine box) ∧

¬periodicTestBox .contains (bx)) {
IntVect shiftMult (fine problem domain .domainBox ().size ());
Box shiftedBox (bx);

for (shiftIt .begin (); shiftIt .ok (); ++shiftIt) {
IntVect shiftVect = shiftMult ∗ shiftIt ();

shiftedBox .shift (shiftVect);
fine interp −= shiftedBox ;
shiftedBox .shift (−shiftVect);

}
}

}
This code is cited in chunks 12 and 17.

This code is used in chunk 18.

20

4.2 Inquiry functions

This is a very small chunk: just the definition of the inquiry function isDefined (). All the function does is to
return the value of m is defined . This function isn’t used anywhere within this source, because the class
methods have direct access to m is defined .

〈 Inquiry functions 24 〉 ≡24

bool PiecewiseLinearFillPatchFace :: isDefined () const

{
return (m is defined);

}

This code is cited in chunk 5.

This code is used in chunk 8.

21

4.3 Filling the Border

Filling the fine grid side of the coarse/fine border is done by function fillInterp . This function is essentially a
wrapper that calls five functions that do the work. Its calling interface was discussed in chunk 〈Public
Interfaces 5 〉, page 4. It is the only visible member of the class, the auxiliary functions it calls being all
protected.

The body of the function begins with simple sanity checks. We ensure that the class and the coarse/fine
border are fully defined and required data structures allocated.

Note that assert will do the checks and aborts only if the code is compiled with and linked against a DEBUG �
version of Chombo utilities. So, it is possible to call fillInterp on an undefined class in a non-DEBUG version of
the code, in which case the code is bound to crash, unless it does not, and that is worse.

Next we ensure that the time interpolation coefficient a time interp coef is restricted to [0, 1].
Finally we exchange the designated components of a fine data between processes of the MPI pool. Observe �

that we do not run a old coarse data .exchange and a new coarse data .exchange . The user must ensure data
integrity of the coarse level before calling fillInterp .

Now we are ready to carry out the interpolations.
First we time-interpolate the data between a old coarse data and a new coarse data . The time-interpolated

data is written on the class protected variable m coarsened fine data . This is the only time we look up the
original coarse data. All following computations are carried out on m coarsened fine data . The time
interpolation function timeInterp is discussed in chunk 〈Time Interpolation 27 〉.

Next we carry out piecewise constant interpolation, i.e., we just copy a single value directly from the
coarsened fine grid cell to all fine grid cells that live directly “under” the coarsened fine grid cell. This is done
by function fillConstantInterp , which is discussed in chunk 〈Piecewise Constant Interpolation 29 〉. There is a
little trick in this part of the code that ensures transfer of data between coarse and matching fine faces, as
opposed to transfer of data from bulk to bulk of the cells as it’s done in PiecewiseLinearFillPatch.

Finally, we add linear corrections to the piecewise constant interpolations. This is done first on the fine faces
that overlap with the coarse faces of the coarsened fine grid—we call this a tangent correction—and then
between the coarse faces of the coarsened fine grid—we call this a normal correction.

The tangent corrections are carried out by evaluating van Leer limited central differences for a given
direction dir in the plane of the face first. This is done by function computeSlopes and the data is stored on
m slopes , separately for each face direction (remember that m slopes is a LevelData〈FluxBox〉). Then
function incrementLinearInterpTangential , which is discussed in chunk 〈Tangent Correction 35 〉, makes use of
whatever it finds in m slopes to add linear corrections to the numbers first written by fillConstantInterp .

Then we carry out a simple linear interpolation between the coarse faces of the coarsened fine grid to fill
internal faces of the fine grid, i.e., fine grid faces that do not overlap with the coarsened fine grid faces. This is
done by function incrementLinearInterpNormal , which is discussed in chunk 〈Normal Correction 37 〉.

And this is it.

〈Fill the Border 25 〉 ≡25

void PiecewiseLinearFillPatchFace ::fillInterp(LevelData〈FluxBox〉 &a fine data , const

LevelData〈FluxBox〉 &a old coarse data , const LevelData〈FluxBox〉 &a new coarse data ,Real

a time interp coef , int a src comp , int a dest comp , int a num comp)
{

assert (m is defined);
assert (a time interp coef ≥ 0.);
assert (a time interp coef ≤ 1.);

Interval fineComps (a src comp , a src comp + a num comp − 1);

a fine data .exchange (fineComps);
timeInterp(a old coarse data , a new coarse data , a time interp coef , a src comp , a dest comp , a num comp);
fillConstantInterp(a fine data , a src comp , a dest comp , a num comp);
for (int dir = 0; dir < SpaceDim ; ++dir) {

computeSlopes (dir , a src comp , a num comp);
incrementLinearInterpTangential (a fine data , dir , a src comp , a dest comp , a num comp);

}
incrementLinearInterpNormal (a fine data , a src comp , a dest comp , a num comp);

}

22

See also chunk 26.

This code is cited in chunks 5, 11, and 37.

This code is used in chunk 8.

¶ In the remaining part of this chunk we put place holders for the definitions of the auxiliary functions used
by fillInterp . Observe that this chunk appends the code to the previous one.

〈Fill the Border 25 〉 +≡26

〈Time Interpolation 27 〉
〈Piecewise Constant Interpolation 29 〉
〈Evaluation of Slopes 31 〉
〈Tangent Correction 35 〉
〈Normal Correction 37 〉

4.3.1 Time Interpolation

The time interpolation function timeInterp takes two fields distributed over a box layout as its arguments,
a old coarse data and a new coarse data . It will time-interpolate between them and write the result on the
class protected field m coarsened fine data . The time interpolation is linear and governed by a Real number
a time interp coef , which must be between 0 and 1. Zero (0) returns a old coarse data , one (1) returns
a new coarse data and any number in between returns a linear combination of a new coarse data and
a old coarse data .

This interpolation preserves divergence free property of both fields. Possible problems with divergence may
show up when we get to space-interpolate the fields.

The interpolation may be carried out for some field components only, in which case the first component and
the number of components to interpolate must be specified. These may be written at some other location in the
destination field, in which case the first destination component must be specified.

The computation begins with a simple safety check. If both the old and the new fields are empty, we print an
error message and abort through MayDay ::Error . Otherwise, there are two simple cases that we can do
without any computation. If a time interp coef is 1 or if the old field is empty, then we can still return a
sensible answer if the new field isn’t empty. In this case we just copy the new field to m coarsened fine data .

Similarly, if a time interp coef is zero or the new field is empty, then we can still return a sensible answer if
the old field isn’t empty. In this case we just copy the old field to m coarsened fine data .

Once we have dealt with these checks and simple cases, we’re left with the actual interpolation, which is
discussed in the next chunk, 〈Time-interpolate between old and new time slices 28 〉.

〈Time Interpolation 27 〉 ≡27

void PiecewiseLinearFillPatchFace ::timeInterp(const LevelData〈FluxBox〉 &a old coarse data , const

LevelData〈FluxBox〉 &a new coarse data ,Real a time interp coef , int a src comp , int

a dest comp , int a num comp)
{

Interval src interval (a src comp , a src comp + a num comp − 1);
Interval dest interval (a dest comp , a dest comp + a num comp − 1);

if ((a old coarse data .boxLayout ().size () ≡ 0) ∧ (a new coarse data .boxLayout ().size () ≡ 0)) {
MayDay ::Error ("PiecewiseLinearFillPatchFace::fillInterp: no old coarse dat\

a and no new coarse data");
}
else if ((a time interp coef ≡ 1.) ∨ (a old coarse data .boxLayout ().size () ≡ 0)) {

a new coarse data .copyTo (src interval ,m coarsened fine data , dest interval);
}
else if ((a time interp coef ≡ 0.) ∨ (a new coarse data .boxLayout ().size () ≡ 0)) {

a old coarse data .copyTo (src interval ,m coarsened fine data , dest interval);
}
else {
〈Time-interpolate between old and new time slices 28 〉

23

}
}

This code is cited in chunks 5, 6, 14, 25, and 31.

This code is used in chunk 26.

¶ Now we get down to the actual time-interpolation. The computation here works as follows. First we copy
the content of a new coarse data to m coarsened fine data , which is the final destination of this whole
operation. We also copy the content of a old coarse data to a new temporary field called
tmp coarsened fine data . Then we multiply the content of m coarsened fine data by a time interp coef and the
content of tmp coarsened fine data by (1 − a time interp coef), and, finally, we add tmp coarsened fine data to
m coarsened fine data and leave the result on the latter.

Some details—the temporary field tmp coarsened fine data is created with the same number of components
and ghost cells as m coarsened fine data and on the same box layout. It is initialized, box-by-box, to −666.666.
The computation is performed on a box-by-box basis, too, using Chombo data parallel operations such as the
multiplication of all data in a box by a number and addition of data in another box to a target box. This is
why we never have to extract the individual fields from FluxBoxes, and we don’t have to loop over the box
cells either.

The copyTo method of the LevelData class copies all box and ghost cell data as well.
The resulting formula is

F (λ) = (1 − λ)F (0) + λF (1)

where λ is a time interp coef , and F is the field. It’s easy to see that when λ is zero we get F (0) and when λ is
one we get F (1).

〈Time-interpolate between old and new time slices 28 〉 ≡28

a new coarse data .copyTo (src interval ,m coarsened fine data , dest interval);

const DisjointBoxLayout &coarsened fine layout = m coarsened fine data .disjointBoxLayout ();
LevelData〈FluxBox〉 tmp coarsened fine data (coarsened fine layout ,m coarsened fine data .nComp (),

m coarsened fine data .ghostVect ());

{
DataIterator dit = coarsened fine layout .dataIterator ();

for (dit .begin (); dit .ok (); ++dit) {
tmp coarsened fine data [dit ()].setVal (−666.666);

}
}
a old coarse data .copyTo (src interval , tmp coarsened fine data , dest interval);

DataIterator dit = coarsened fine layout .dataIterator ();

for (dit .begin (); dit .ok (); ++dit) {
FluxBox &coarsened fine fb = m coarsened fine data [dit ()];
FluxBox &tmp coarsened fine fb = tmp coarsened fine data [dit ()];

for (int dir = 0; dir < SpaceDim ; dir ++) {
coarsened fine fb [dir] ∗= a time interp coef ;
tmp coarsened fine fb [dir] ∗= (1. − a time interp coef);
coarsened fine fb [dir] += tmp coarsened fine fb [dir];

}
}

This code is cited in chunks 27 and 31.

This code is used in chunk 27.

4.3.2 Piecewise Constant Interpolation

This is a short function that just transfers data to the coarse/fine border region of a fine data from the
overlapping region of m coarsened fine data . Recall that by the time this function is called,
m coarsened fine data should have been filled with data that was time-interpolated by timeInterp().

24

The data in this function, fillConstantInterp , is not modified in any way yet. It is only copied to a fine data .
The trick is to ensure that the data is moved between the right locations in both grids. What these locations
are we are going to analyze closely in the next chunk, 〈Copy data between locations 30 〉.

The function takes the field a fine data as its argument. This field is going to be changed, on its boundary
with the coarse region, by the function. The other arguments are the starting points for the source and
destination components and the number of components.

First, the box layout is extracted from a fine data and a data iterator associated with it. The data iterator
can be used both for a fine data boxes and for m coarsened fine data boxes, since they overlap.

So, we enter a loop over the boxes of the layout. We extract a FluxBox from a fine data and call it
fine flux , then we also extract a corresponding FluxBox from m coarsened fine data and call it coarse flux . At
this stage we enter a loop over the face directions of the box, since there is a different flux associated with each
of them for both FluxBoxes.

For each face direction faceDir we extract a flux from the fine flux and from the coarse flux and we call
them fine fab and coarse fab correspondingly, “fab” being a Chombo moniker for a field of numbers (or
columns of numbers) spanned over a box. Now we also get a set of points onto which we will interpolate data in
a given a fine data box. The set of points lives in m fine interp [faceDir][dit ()]. We call the set local fine interp

and we are going to iterate over all points of the set. The points will be returned by ivsit () inside the for loop,
which, for every such point, locates and copies the corresponding number from the coarse fab .

〈Piecewise Constant Interpolation 29 〉 ≡29

void PiecewiseLinearFillPatchFace ::fillConstantInterp(LevelData〈FluxBox〉 &a fine data , int

a src comp , int a dest comp , int a num comp) const

{
DataIterator dit = a fine data .boxLayout ().dataIterator ();

for (dit .begin (); dit .ok (); ++dit) {
FluxBox &fine flux = a fine data [dit ()];
const FluxBox &coarse flux = m coarsened fine data [dit ()];

for (int faceDir = 0; faceDir < SpaceDim ; faceDir ++) {
FArrayBox &fine fab = fine flux [faceDir];
const FArrayBox &coarse fab = coarse flux [faceDir];
const IntVectSet &local fine interp = m fine interp [faceDir][dit ()];
IVSIterator ivsit (local fine interp);

for (ivsit .begin (); ivsit .ok (); ++ivsit) {〈Copy data between locations 30 〉}
}

}
}

This code is cited in chunks 6, 7, 25, 31, 35, and 37.

This code is used in chunk 26.

¶ The fine grid point returned by the iterator is ivsit () and we call it fine iv . Now, this point corresponds to
the center of the fine grid cell. But our data does not live on cell centers. It lives on the walls.

If all the data was cell centered, then the algorithm would simply be coarse iv = coarsen (fine iv ,m ref ratio),
with fine iv as returned by ivsit (). For m ref ratio = 2 there would be four fine cells for each coarse cell, and
each of these would get the value from the coarse cell that overlaps with it. Simple. This is what the standard
Chombo function PiecewiseLinearFillPatch ::fillConstantInterp does.

But for the face mounted data the code here does a little dance, which I don’t think is really necessary. �
Let us fix m ref ratio at 2 as above. Let faceDir correspond to left-right. The four fine cells that overlap

with a single coarse cell can be divided into two left cells and two right cells.
Consider the left wall cells first. The algorithm in this chunk first shifts them to the left, so they end up

under the left neighbor of the coarse cell. This is what coarsen returns. But now we shift this coarse cell back
to the right and we end up with the original coarse cell. Then we shift the fine cells to the right as well. So, in
effect, nothing will have changed. These two left cells will inherit a value that corresponds to the coarse cell
they live in.

In this case the coarse cell value lives on the same face as the fine cell values, so this result is what we want

25

But now consider the right fine grid cells. When we shift them to the left the stay in the same coarsened fine
grid cell. Then we shift the latter to the right and we again shift the former to the right. In effect the right fine
grid cells get data not from their own coarsened fine grid cell, but from the one that’s to the right of their cell.

Now, this is fine, because we are going to ignore this data in chunk 〈Normal Correction 37 〉 anyway. But
then, what is the point of this dance in the first place? The coarsened fine grid face data would have been
transferred correctly anyway.

〈Copy data between locations 30 〉 ≡30

IntVect fine iv = ivsit ();

fine iv .shift (faceDir ,−1);

IntVect coarse iv = coarsen (fine iv ,m ref ratio);

coarse iv .shift (faceDir , +1);
fine iv .shift (faceDir , +1);

int coarse comp = a src comp ;
int fine comp = a dest comp ;

for (; coarse comp < a src comp + a num comp ; ++fine comp , ++coarse comp)
fine fab (fine iv ,fine comp) = coarse fab (coarse iv , coarse comp);

This code is cited in chunk 29.

This code is used in chunk 29.

4.3.3 Evaluation of Slopes

Function computeSlopes evaluates van Leer limited gradients of fluxes associated with a given face in directions
perpendicular to the direction of the face.

The gradients will then be used by incrementLinearInterpTangential to evaluate linear corrections to the
constant values that have been written on the fine grid cells of the coarse/fine border by fillConstantInterp in
chunk 〈Piecewise Constant Interpolation 29 〉.

The gradients of field components are evaluated on the coarse data, which by now should live in
m coarsened fine data , as it has been written on it by timeInterp , see chunks 〈Time Interpolation 27 〉 and
〈Time-interpolate between old and new time slices 28 〉.

The function takes a direction of the slope, an initial source component, and a number of components as its
only three arguments. It does not take the destination component, because it does not do the writing on
anything other than m slopes .

The body of the function is a loop over face directions other than a dir .
Before we enter the if (faceDir 6= a dir) clause, we initialize m slopes to −666.666. Then we commence a

loop over all boxes of the box layout m coarsened fine data is defined on.
Once we have focused on a particular box dit () and a particular direction faceDir , we extract an

FArrayBox (i.e., a flux through this face) from m coarsened fine data and call it data fab . We also extract an
FArrayBox from m slopes and call it slope fab . Then we extract sets of cells that correspond to the slope
direction a dir , face direction faceDir , and box dit () from m coarse centered interp , m coarse lo interp and
m coarse hi interp and call them local centered interp , local lo interp and local hi interp respectively.

The evaluation of slopes is now carried out by three chunks. First we calculate van Leer limited central
differences in 〈Evaluate van Leer limited central differences 32 〉, then low one-sided differences in 〈Evaluate low
one-sided differences 33 〉, and finally high one-sided differences in 〈Evaluate high one-sided differences 34 〉.

〈Evaluation of Slopes 31 〉 ≡31

void PiecewiseLinearFillPatchFace ::computeSlopes (int a dir , int a src comp , int a num comp)
{

for (int faceDir = 0; faceDir < SpaceDim ; faceDir ++) {
{

DataIterator dit = m slopes .boxLayout ().dataIterator ();

for (dit .begin (); dit .ok (); ++dit) {
m slopes [dit ()][faceDir].setVal (−666.666);

}

26

}
if (faceDir 6= a dir) {

DataIterator dit = m coarsened fine data .boxLayout ().dataIterator ();

for (dit .begin (); dit .ok (); ++dit) {
const FArrayBox &data fab = m coarsened fine data [dit ()][faceDir];
FArrayBox &slope fab = m slopes [dit ()][faceDir];
const IntVectSet &local centered interp = m coarse centered interp [a dir][faceDir][dit ()];
const IntVectSet &local lo interp = m coarse lo interp [a dir][faceDir][dit ()];
const IntVectSet &local hi interp = m coarse hi interp [a dir][faceDir][dit ()];

〈Evaluate van Leer limited central differences 32 〉
〈Evaluate low one-sided differences 33 〉
〈Evaluate high one-sided differences 34 〉

}
}

}
}

This code is cited in chunks 6, 21, 32, and 35.

This code is used in chunk 26.

¶ We begin the evaluation of centered differences by obtaining the IVSIterator for the local centered interp

set. Now we loop over all points in the set, the centered ivsit () returning an IntVect, which we call iv .
For each cell iv , we find its neighbors in the direction of the slope, a dir , one “to the right”, which we call

ivhi , and one “to the left”, which we call ivlo . And we can be certain that these neighbours exist and have valid
data associated with them within m coarsened fine data , because the points have been picked up from the
local centered interp set.

Now we loop over all components specified when function computeSlopes was called in chunk 〈Evaluation of
Slopes 31 〉. For each component we first evaluate the low slope dlo, then then high slope dhi, then take their
average (dlo + dhi)/2 and this is the central slope dcenter.

Now, the slope limiting works as follows. We first make the limited slope dlim to be

dlim = 2 minmod (dlo, dhi) ,

which is zero if the signs of dlo and dhi differ, and 2 times the closer of the two to zero otherwise. Then we
take again

minmod (dlim, dcenter)

If dlo and dhi are close and equal approximately to some d, then

2 minmod (dlo, dhi) ≈ 2d

and the average of the two is d. Then minmod(2d, d) is always just d. So in this case we will always return the
plain centered difference.

But if one of dlo or dhi is more than 3 times the other, then 2 times the lower one is less than the average of
the two slopes, and in this case we return 2 times the smaller of the two slopes.

This is the van Leer central difference. Doing this prevents creation of artificial minima or maxima in the
interpolated data. The factor 2 is not accidental or arbitrary.2

The value obtained this way is then transferred from dlim to slope fab (iv , comp).

〈Evaluate van Leer limited central differences 32 〉 ≡32

IVSIterator centered ivsit (local centered interp);

for (centered ivsit .begin (); centered ivsit .ok (); ++centered ivsit) {
const IntVect &iv = centered ivsit ();
const IntVect ivlo = iv − BASISV(a dir);
const IntVect ivhi = iv + BASISV(a dir);

2The weaver owes again thanks to Dan Martin for pointing this.

27

for (int comp = a src comp ; comp < a src comp + a num comp ; ++comp) {
Real dlo = data fab (iv , comp) − data fab (ivlo , comp);
Real dhi = data fab (ivhi , comp) − data fab (iv , comp);
Real dcenter = .5 ∗ (dlo + dhi);
Real dlim = 2. ∗ Min (Abs (dlo),Abs (dhi));

if (dlo ∗ dhi < 0.) dlim = 0.;
dlim = copysign (Min (Abs (dcenter), dlim), dcenter);
slope fab (iv , comp) = dlim ;

}
}

This code is cited in chunks 9 and 31.

This code is used in chunk 31.

¶ There is less hocus pocus in this part of the code. Here we just pick up a point, called iv , from the
local lo interp set. Then move one step “to the left” in the slope direction a dir , and this new point is ivlo .
Then we evaluate differences between field values at iv and ivlo for all components and store them in slope fab .

We cannot make a step “to the right” in this case, because we’d fall off the edge. . . of the coarse grid.

〈Evaluate low one-sided differences 33 〉 ≡33

IVSIterator lo ivsit (local lo interp);

for (lo ivsit .begin (); lo ivsit .ok (); ++lo ivsit) {
const IntVect &iv = lo ivsit ();
const IntVect ivlo = iv − BASISV(a dir);

for (int comp = a src comp ; comp < a src comp + a num comp ; ++comp) {
Real dlo = data fab (iv , comp) − data fab (ivlo , comp);

slope fab (iv , comp) = dlo ;
}

}

This code is cited in chunks 31 and 34.

This code is used in chunk 31.

¶ Here we do the same as above, i.e., in chunk 〈Evaluate low one-sided differences 33 〉, but instead of moving
“to the left”, we move “to the right”. The point to the right of iv is called ivhi . The differences between field
values at ivhi and iv are evaluated for all components and stored on slope fab .

Note that all the differences, central and one sided, go to slope fab . Once they’re in there, we no longer now
which are which.

〈Evaluate high one-sided differences 34 〉 ≡34

IVSIterator hi ivsit (local hi interp);

for (hi ivsit .begin (); hi ivsit .ok (); ++hi ivsit) {
const IntVect &iv = hi ivsit ();
const IntVect ivhi = iv + BASISV(a dir);

for (int comp = a src comp ; comp < a src comp + a num comp ; ++comp) {
Real dhi = data fab (ivhi , comp) − data fab (iv , comp);

slope fab (iv , comp) = dhi ;
}

}
This code is cited in chunk 31.

This code is used in chunk 31.

28

4.3.4 Tangent Correction

Here we implement first linear corrections to the constant interpolants written on a fine data by
fillConstantInterp , chunk 〈Piecewise Constant Interpolation 29 〉. The function takes a fine data as its
argument, plus the slope direction a dir , followed by the start source and destination components and the
number of components to interpolate.

The body of the function is a large loop over face directions faceDir perpendicular to the slope direction
a dir . Within this loop we loop over all boxes of the a fine data box layout.

And so, for a given direction faceDir , different from a dir and a given box pointed to by dit () we extract
FArrayBoxes from m slopes and from a fine data and call them slope fab and fine data fab respectively.

The m slopes field would have been written on by computeSlopes in chunk 〈Evaluation of Slopes 31 〉 by now.
This field contains van Leer limited centered differences and single side differences depending on the cells, which
were collected and divided into m coarse centered interp , m coarse lo interp and m coarse hi interp by define

in chunks 〈Collect coarse cells for interpolation 19 〉 and 〈Refine coarse cells sets 21 〉. But by now we no longer
need these sets, because we’ll find the right data in the right places in slope fab .

On the other hand we still need m fine interp , i.e., the field of sets of fine grid points onto which we are
interpolating data from the coarse grid. We extract the set that corresponds to direction faceDir and box dit ()
and call it fine interp . We are now going to iterate over all points of this set applying tangent linear corrections
to data associated with them. If the set is empty, we don’t do anything, of course.

〈Tangent Correction 35 〉 ≡35

void PiecewiseLinearFillPatchFace :: incrementLinearInterpTangential (LevelData〈FluxBox〉
&a fine data , int a dir , int a src comp , int a dest comp , int a num comp) const

{
for (int faceDir = 0; faceDir < SpaceDim ; faceDir ++) {

if (faceDir 6= a dir) {
DataIterator dit = a fine data .boxLayout ().dataIterator ();

for (dit .begin (); dit .ok (); ++dit) {
const FArrayBox &slope fab = m slopes [dit ()][faceDir];
FArrayBox &fine data fab = a fine data [dit ()][faceDir];
const IntVectSet &fine interp = m fine interp [faceDir][dit ()];
IVSIterator ivsit (fine interp);

for (ivsit .begin (); ivsit .ok (); ++ivsit) {〈Apply tangent correction 36 〉}
}

}
}

}
This code is cited in chunks 6, 7, 25, and 37.

This code is used in chunk 26.

¶ Finally we come to the very heart of this activity. The fine grid cell at which the correction is applied is
called fine iv , and coarse iv is the coarse grid cell to which this fine grid cell belongs. This correction is applied
within the plane of the face only.

Within the plane of the face the fine grid points are offset with respect to the coarse grid points the same
way they are offset for cell-centered data. This is why this correction looks exactly like the correction made by
function incrementLinearInterp in the PiecewiseLinearFillPatch class of standard Chombo.

The formula we want to apply here is as follows. Suppose a dir points in the ex direction.
Let xf be the physical location of the fine grid point and xc be the physical location of the corresponding

coarse grid point. We find that xf = nf∆xf + xf0 and xc = nc∆xc + xc0, where nf/nc = r is the refinement
ratio. The correction to the value of field f at xf is

f(xf) = f(xc) +
df

dx
(xf − xc)

which is

f(xf) = f(xc) +
df

dx
(nf∆xf + xf0 − nc∆xc − xc0)

29

The expression in the bracket can be transformed further as follows:

(nf − ncr)∆xf + xf0 − xc0

The origins of both grids are shifted with respect to each other by (r − 1) × ∆xf/2, with xf0 < xc0, so

xf0 − xc0 = (1 − r)∆xf /2

Hence the multiplier of df/dx is
((1 − r)/2 + (nf − ncr)) ∆xf

The slope was evaluated for one coarse grid spacing, meaning that

df

dx
≈

∆f

∆xc

Hence the correction term is

∆f

∆xc

((1 − r)/2 + (nf − ncr)) ∆xf = ∆f
(1 − r)/2 + (nf − ncr)

r

which yields
(

−
1

2
+

nf − ncr + 1/2

r

)

∆f

Now let us have a look at the code. We evaluate nf − ncr first and this goes into offset . Then we evaluate
the whole multiplier and this goes into interp coef . Now we enter the loop over the field components and add
the corresponding (xf − xc)df/dx corrections to the values in the fine data fab at this point.

Observe that even though we have been emphasizing that this is done on the fine grid faces that overlap with �
coarse grid faces, the code, in fact, does it everywhere, sic! The point is that in the next chunk, we will
overwrite completely the values on fine grid faces that do not overlap with the coarse grid faces.

There is a lot of redundant computation in this code.

〈Apply tangent correction 36 〉 ≡36

const IntVect &fine iv = ivsit ();
const IntVect coarse iv = coarsen (fine iv ,m ref ratio);
const int offset = fine iv [a dir] − m ref ratio ∗ coarse iv [a dir];
Real interp coef = −.5 + (offset + .5)/m ref ratio ;
int coarse comp = a src comp ;
int fine comp = a dest comp ;

for (; coarse comp < a src comp + a num comp ; ++coarse comp , ++fine comp) {
fine data fab (fine iv ,fine comp) += interp coef ∗ slope fab (coarse iv , coarse comp);

}

This code is cited in chunk 37.

This code is used in chunk 35.

4.3.5 Normal Correction

This chunk implements linear correction to the interpolation in the direction that’s normal to the face. Recall
that function incrementLinearInterpNormal is called outside the for loop of fillInterp (see chunk 〈Fill the
Border 25 〉). It takes a fine data , starting components on both the source and destination side and the number
of components as its only arguments.

Both the source and the destination data live on a fine data , because we have already transferred data to it
from m coarsened fine data in chunk 〈Piecewise Constant Interpolation 29 〉 and applied sideways corrections to
it in chunks 〈Tangent Correction 35 〉 and 〈Apply tangent correction 36 〉. The normal correction here basically
recomputes values on faces that do not overlap with coarse faces by averaging them between the coarse grid
faces.

30

The body of the function is a loop over face directions. For each direction we construct an IntVect that
points in this direction and its length is equal to the refinement ratio m ref ratio . Then we enter a loop over all
boxes of the a fine data box layout.

Within this loop we extract the FArrayBox for the face and the box from a fine data and call it
fine data fab . Then we extract the set of fine interpolation points for this box and this face direction and call it
fine interpIVS . And then we get to loop over these points. Of course, if the set is empty, we don’t do anything,
so whatever happens next happens to border boxes only.

For each grid point in a border box, we call this point fine iv , we extract the coordinate of this point in the
faceDir direction and call it loEdgeComp . Then we check if this coordinate corresponds to a face of the coarse
grid. If the point is on the face of the coarse grid, then loEdgeComp divides by m ref ratio . So if we divide it
by m ref ratio and then multiply by it, we should get back its original value. We compare the value obtained
against the original value, which is re-retrieved from fine iv and if it checks, i.e., if the point lies on the coarse
grid face . . . we do nothing.

If the point does not lie on the coarse grid face, then we interpolate.

〈Normal Correction 37 〉 ≡37

void PiecewiseLinearFillPatchFace :: incrementLinearInterpNormal (LevelData〈FluxBox〉
&a fine data , int a src comp , int a dest comp , int a num comp) const

{
for (int faceDir = 0; faceDir < SpaceDim ; faceDir ++) {

IntVect hiShift (IntVect ::TheZeroVector ());

hiShift .setVal (faceDir ,m ref ratio);

DataIterator dit = a fine data .dataIterator ();

for (dit .reset (); dit .ok (); ++dit) {
FArrayBox &fine data fab = a fine data [dit ()][faceDir];
const IntVectSet &fine interpIVS = m fine interp [faceDir][dit ()];
IVSIterator ivsit (fine interpIVS);

for (ivsit .begin (); ivsit .ok (); ++ivsit) {
const IntVect &fine iv = ivsit ();
int loEdgeComp = fine iv [faceDir];

loEdgeComp = m ref ratio ∗ (loEdgeComp /m ref ratio);
if (loEdgeComp 6= fine iv [faceDir]) {〈 Interpolate between faces 38 〉}

}
}

}
}

This code is cited in chunks 6, 25, and 30.

This code is used in chunk 26.

¶ So, now we are looking at a point that is between the coarse grid faces. The vector called loVect corresponds
to the low coarse grid face and hiVect corresponds to the high grid face. Our point fine iv is between them. The
distance, in coarse grid cells, between fine iv and the low coarse grid face is fraction . It is evaluated initially in
fine grid cells, but is then scaled to coarse grid cells when it gets divided by m ref ratio . Let us call this fraction
λ, let the position of the low coarse grid face be xlo and the position of the high coarse grid face by xhi. Then

λ =
x − xlo

xhi − xlo

.

Now we enter the loop over the components of the field and implement the following calculation at x. Let
f(xlo) and f(xhi) be field values at the low and high faces respectively. Then

f(x) = λf(xhi) + (1 − λ)f(xlo).

Observe that we do not add a correction to f(x) here. We overwrite completely whatever value may have been
placed in fine data fab by fillConstantInterp , and later also by incrementLinearInterpTangential , with a
weighed average of f(xlo) and f(xhi).

31

〈 Interpolate between faces 38 〉 ≡38

IntVect loVect (fine iv);

loVect .setVal (faceDir , loEdgeComp);

IntVect hiVect = loVect + hiShift ;
Real fraction = fine iv [faceDir] − loEdgeComp ;

fraction = fraction/m ref ratio ;
for (int comp = a dest comp ; comp < a dest comp + a num comp ; ++comp) {

fine data fab (fine iv , comp) = (1.0 − fraction) ∗ fine data fab (loVect , comp);
fine data fab (fine iv , comp) += fraction ∗ fine data fab (hiVect , comp);

}

This code is cited in chunk 5.

This code is used in chunk 37.

32

4.4 Debugging Utilities

There isn’t much here in terms of debugging. But we have a simple method that lets us print all the sets
constructed by define . The function loops over the face directions, then over the boxes of the m fine interp box
layout and prints the m fine interp set for each box and face direction. Then it enters another internal loop,
over the slope directions, and prints m coarse centered interp , m coarse lo interp and m coarse hi interp for
each slope direction, face direction and box.

All output is on cout , not on pout (). So this function cannot be used in a parallel context.
It would be a good idea to expand on this a little and make this function also write Gnuplot data files for �

display of the actual grid points collected in each of the sets. Another iteration could make it write a Chombo
HDF5 file with the same data.

〈Debugging Utilities 39 〉 ≡39

void PiecewiseLinearFillPatchFace ::printIntVectSets() const

{
for (int faceDir = 0; faceDir < SpaceDim ; faceDir ++) {

cout ≪ "face direction = " ≪ faceDir ≪ endl ;

DataIterator lit = m fine interp [faceDir].boxLayout ().dataIterator ();

for (lit .begin (); lit .ok (); ++lit) {
cout ≪ "grid " ≪ lit ().intCode () ≪ ": " ≪ endl ;
cout ≪ "fine ivs" ≪ endl ;
cout ≪ m fine interp [faceDir][lit ()] ≪ endl ;
for (int dir = 0; dir < SpaceDim ; ++dir) {

cout ≪ "coarse centered ivs [" ≪ dir ≪ "]: " ≪ endl ;
cout ≪ m coarse centered interp [dir][faceDir][lit ()] ≪ endl ;
cout ≪ "coarse lo ivs [" ≪ dir ≪ "]: " ≪ endl ;
cout ≪ m coarse lo interp [dir][faceDir][lit ()] ≪ endl ;
cout ≪ "coarse hi ivs [" ≪ dir ≪ "]: " ≪ endl ;
cout ≪ m coarse hi interp [dir][faceDir][lit ()] ≪ endl ;

}
}

}
}

This code is cited in chunk 5.

This code is used in chunk 8.

¶

33

Index

Here is a list of the identifiers used, and the chunks where they appear. Underlined entries indicate the place of
definition.

_PIECEWISE_LINEAR_FILL_PATCH_FACE_H_: 3.
a: 9.
a coarse domain : 5, 10, 11, 14, 22.
a crse problem domain : 5, 10, 11, 12, 13, 14.
a dest comp : 5, 6, 25, 27, 29, 30, 35, 36, 37, 38.
a dir : 6, 31, 32, 33, 34, 35, 36.
a fine data : 5, 6, 7, 14, 19, 25, 29, 35, 37.
a fine domain : 5, 10, 11, 13, 14, 16, 19, 23.
a interp radius : 5, 10, 11, 12, 13.
a new coarse data : 5, 6, 14, 25, 27, 28.
a num comp : 5, 6, 25, 27, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38.
a num comps : 5, 10, 11, 14.
a old coarse data : 5, 6, 14, 25, 27, 28.
a ref ratio : 5, 10, 11, 12, 13.
a src comp : 5, 6, 25, 27, 29, 30, 31, 32, 33,

34, 35, 36, 37.
a time interp coef : 5, 6, 25, 27, 28.
Abort : 13.
Abs : 32.
assert : 13, 14, 25.
b: 9.
BASISV: 21, 32, 33, 34.
begin : 14, 18, 19, 20, 22, 23, 28, 29, 31, 32, 33,

34, 35, 37, 39.
Box: 4, 5, 10, 17, 19, 20, 22, 23.
BoxLayout: 14, 20, 23.
boxLayout : 27, 29, 31, 35, 39.
bx : 22, 23.
centered ivsit : 32.
cerr : 13.
checkPeriodic : 13, 14.
closed : 11.
coarse centered interp : 21.
coarse comp : 30, 36.
coarse fab : 29, 30.
coarse fine interp : 21.
coarse flux : 29.
coarse ghost : 14.
coarse ghost radius : 7, 14.
coarse hi interp : 21, 22.
coarse iv : 30, 36.
coarse lit : 22.
coarse lo interp : 21, 22.
coarse slope : 14.
coarse slope radius : 14.
coarsen : 14, 19, 30, 36.
coarsened fine domain : 14, 16, 18, 19, 23.
coarsened fine facebox : 19, 20, 22.
coarsened fine fb : 28.

coarsened fine interp : 18, 19, 20, 21.
coarsened fine layout : 28.
comp : 32, 33, 34, 38.
computeSlopes : 6, 25, 31, 32, 35.
contains : 20, 22, 23.
copy : 4.
copysign : 9, 32.
copyTo : 14, 27, 28.
cout : 9, 39.
crsephysdomain : 10.
data fab : 31, 32, 33, 34.
DataIterator: 14, 18, 28, 29, 31, 35, 37, 39.
dataIterator : 14, 18, 28, 29, 31, 35, 37, 39.
dcenter : 32.
DEBUG: 13, 25.
define : 2, 3, 5, 7, 10, 11, 14, 15, 16, 18, 23, 35, 39.
dest interval : 27, 28.
dhi : 32, 34.
dir : 16, 21, 25, 28, 39.
disjointBoxLayout : 28.
DisjointBoxLayout: 4, 5, 10, 11, 13, 14, 19, 28.
dit : 14, 18, 19, 21, 22, 23, 28, 29, 31, 35, 37.
dlim : 32.
dlo : 32, 33.
DNDEBUG: 13.
domainBox : 17, 20, 22, 23.
endl : 9, 39.
Error : 13, 27.
exchange : 14, 25.
faceDir : 15, 16, 18, 19, 21, 22, 23, 29, 30, 31,

35, 37, 38, 39.
FaceDir : 19.
false : 10, 13.
FArrayBox : 4, 5, 7, 14, 29, 31, 35, 37.
fillConstantInterp : 6, 7, 25, 29, 30, 31, 35, 38.
fillInterp : 5, 8, 11, 25, 26, 37.
fine box : 19, 23.
fine comp : 30, 36.
fine data fab : 35, 36, 37, 38.
fine fab : 29, 30.
fine faceBox : 23.
fine flux : 29.
fine interp : 23, 35.
fine interpIVS : 37.
fine iv : 30, 36, 37, 38.
fine lit : 23.
fine problem domain : 13, 17, 23.
fineComps : 25.
FluxBox: 2, 4, 5, 6, 7, 14, 25, 27, 28, 29, 35, 37.
fraction : 38.

34

fstream : 4.
get : 19, 22, 23.
ghostVect : 14, 28.
grow : 17, 19, 23.
growHi : 19.
hi ivsit : 34.
hiShift : 37, 38.
hiVect : 38.
idir : 17.
incrementLinearInterp : 36.
incrementLinearInterpNormal : 6, 25, 37.
incrementLinearInterpTangential : 6, 25, 31,

35, 38.
intCode : 39.
interp coef : 36.
Interval: 25, 27.
IntVect: 4, 7, 9, 14, 20, 22, 23, 30, 32, 33,

34, 36, 37, 38.
IntVectSet: 4, 7, 19, 21, 23, 29, 31, 35, 37.
iostream : 4.
isClosed : 11, 14.
isDefined : 5, 24.
isPeriodic : 17, 20, 22, 23.
iv : 32, 33, 34.
ivhi : 32, 34.
ivlo : 32, 33.
ivsit : 29, 30, 35, 36, 37.
IVSIterator: 29, 32, 33, 34, 35, 37.
LayoutData : 7.
layoutIterator : 19, 22, 23.
LayoutIterator: 14, 19, 22, 23.
LevelData: 2, 4, 5, 6, 7, 10, 14, 23, 25, 27,

28, 29, 35, 37.
lit : 39.
lo ivsit : 33.
local centered interp : 31, 32.
local fine interp : 29.
local hi interp : 31, 34.
local lo interp : 31, 33.
loEdgeComp : 37, 38.
loVect : 38.
m coarse centered interp : 7, 15, 16, 18, 21, 31,

35, 39.
m coarse hi interp : 7, 15, 16, 18, 21, 31, 35, 39.
m coarse lo interp : 7, 15, 16, 18, 21, 31, 35, 39.
m coarse problem domain : 11.
m coarsened fine data : 6, 7, 11, 13, 14, 25, 27,

28, 29, 31, 32, 37.
m crse problem domain : 7, 12, 13, 17, 19, 20, 22.
m fine interp : 7, 15, 16, 18, 23, 29, 35, 37, 39.
m interp radius : 7, 11, 12, 13, 14, 19, 23.
m is defined : 7, 10, 11, 24, 25.
m ref ratio : 7, 11, 12, 13, 14, 19, 30, 36, 37, 38.
m slopes : 7, 11, 13, 14, 25, 31, 35.
MayDay : 13, 27.

Min : 32.
nComp : 28.
NODE: 19.
offset : 36.
ok : 14, 18, 19, 20, 22, 23, 28, 29, 31, 32, 33,

34, 35, 37, 39.
other coarsened box : 19, 20.
other lit : 19.
periodicFineTestBox : 17, 23.
periodicTestBox : 17, 20, 22, 23.
PiecewiseLinearFillPatch: 1, 2, 7, 11, 15,

19, 25, 30, 36.
PiecewiseLinearFillPatchFace: 1, 2, 3, 5, 7, 9,

10, 11, 24, 25, 27, 29, 31, 35, 37, 39.
pout : 39.
printIntVectSets : 5, 8, 39.
ProblemDomain: 4, 5, 7, 10, 11, 12, 13, 14, 20.
Real: 4, 5, 6, 25, 27, 32, 33, 34, 36, 38.
refine : 13.
reset : 37.
s stencil radius : 7, 9, 14.
setVal : 4, 14, 28, 31, 37, 38.
shift : 4, 20, 21, 22, 23, 30.
shiftedBox : 20, 22, 23.
shiftHalf : 19, 22, 23.
shiftIt : 12, 20, 22, 23.
ShiftIterator: 12, 20.
shiftIterator : 12.
shiftMult : 20, 22, 23.
shiftVect : 20, 22, 23.
size : 20, 22, 23, 27.
slope fab : 31, 32, 33, 34, 35, 36.
SpaceDim : 7, 15, 16, 17, 21, 25, 28, 29, 31,

35, 37, 39.
src interval : 27, 28.
std : 9.
surroundingNodes : 19, 22, 23.
T : 9.
TheZeroVector : 37.
timeInterp : 6, 25, 27, 29, 31.
tmp coarsened fine data : 28.
tmp coarsened fine fb : 28.
true : 7, 10, 11.
Unit : 14.

35

List of Refinements

〈Allocate grid point sets for each direction 16 〉 Cited in chunk 15. Used in chunk 15.

〈Apply tangent correction 36 〉 Cited in chunk 37. Used in chunk 35.

〈CPP File Includes 9 〉 Cited in chunks 7 and 14. Used in chunk 8.

〈Collect coarse cells for interpolation 19 〉 Cited in chunks 14, 21, 22, 23, and 35. Used in chunk 18.

〈Collect fine cells for interpolation 23 〉 Cited in chunks 12 and 17. Used in chunk 18.

〈Copy data between locations 30 〉 Cited in chunk 29. Used in chunk 29.

〈Debugging Utilities 39 〉 Cited in chunk 5. Used in chunk 8.

〈Define the Border 11 〉 Cited in chunks 14 and 15. Used in chunk 8.

〈Evaluate high one-sided differences 34 〉 Cited in chunk 31. Used in chunk 31.

〈Evaluate low one-sided differences 33 〉 Cited in chunks 31 and 34. Used in chunk 31.

〈Evaluate van Leer limited central differences 32 〉 Cited in chunks 9 and 31. Used in chunk 31.

〈Evaluation of Slopes 31 〉 Cited in chunks 6, 21, 32, and 35. Used in chunk 26.

〈Fill the Border 25, 26 〉 Cited in chunks 5, 11, and 37. Used in chunk 8.

〈 Includes 4 〉 Used in chunk 3.

〈 Inquiry functions 24 〉 Cited in chunk 5. Used in chunk 8.

〈 Interpolate between faces 38 〉 Cited in chunk 5. Used in chunk 37.

〈Loop over boxes of the coarsened fine domain 18 〉 Cited in chunks 15 and 23. Used in chunk 15.

〈Make correction for periodic boundary conditions 20 〉 Cited in chunks 12, 17, 19, 22, and 23. Used in chunk 19.

〈Make devices for testing periodic boundaries 17 〉 Cited in chunks 15 and 20. Used in chunk 15.

〈Normal Correction 37 〉 Cited in chunks 6, 25, and 30. Used in chunk 26.

〈Piecewise Constant Interpolation 29 〉 Cited in chunks 6, 7, 25, 31, 35, and 37. Used in chunk 26.

〈 Prolongate.H 3 〉
〈Protected Interfaces 6 〉 Cited in chunk 5. Used in chunk 3.

〈Protected Variables 7 〉 Cited in chunks 9, 11, 16, and 20. Used in chunk 3.

〈Public Interfaces 5 〉 Cited in chunks 10, 11, and 25. Used in chunk 3.

〈Refine coarse cells sets 21 〉 Cited in chunks 15 and 35. Used in chunk 18.

〈Subtract coarse domain boxes from one sided stencils 22 〉 Cited in chunks 12, 17, and 21. Used in chunk 21.

〈Tangent Correction 35 〉 Cited in chunks 6, 7, 25, and 37. Used in chunk 26.

〈Time Interpolation 27 〉 Cited in chunks 5, 6, 14, 25, and 31. Used in chunk 26.

〈Time-interpolate between old and new time slices 28 〉 Cited in chunks 27 and 31. Used in chunk 27.

〈Wrappers for Define 10 〉 Used in chunk 8.

〈 create private data structures 14 〉 Cited in chunks 7, 9, 13, and 21. Used in chunk 11.

〈 loop over face directions 15 〉 Cited in chunks 15 and 18. Used in chunk 11.

〈perform sanity checks 13 〉 Cited in chunk 14. Used in chunk 11.

〈 transfer data to private variables 12 〉 Cited in chunk 20. Used in chunk 11.

36

